
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Jussi-Pekka Erkkilä

Web and Native Technologies in Mo-
bile Application Development

Master’s Thesis
Espoo, Feb 19, 2013

Supervisor: Professor Jukka K. Nurminen, Aalto University
Instructor: Antti Saarinen M.Sc. (Tech.)

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Jussi-Pekka Erkkilä

Title:
Web and Native Technologies in Mobile Application Development

Date: Feb 19, 2013 Pages: 97

Professorship: Data Communication Software Code: T-110

Supervisor: Professor Jukka K. Nurminen

Instructor: Antti Saarinen M.Sc. (Tech.)

In recent years, the mobile application development has became an increasingly
important area in the software industry. However, there are multiple different
and incompatible mobile platforms and ecosystems on the market. The issue for
application developers is supporting all the different devices and platforms.

New web programming technologies, such as CSS3 and HTML5, bring new oppor-
tunities for the mobile application development. Since practically every mobile
device includes a web browser, web technologies provide a way to cover almost
all modern mobile devices by writing a single application. This thesis reviews the
current status of HTML5 and other web technologies, and compares them to the
native, platform-specific development technologies. The main focus of the thesis
is to evaluate the advantages and disadvantages of the web technologies in mobile
application development, and how the web technologies affect on resource usage,
performance and user experience in mobile applications.

As a conclusion we state that whereas the native technologies provide an optimal
user experience and performance, the web technologies provide fast and flexible
way to produce cross-platform mobile applications. The web technologies already
provide a competitive alternative to the native technologies. However, the best
technology for implementing a mobile application depends on several factors, such
as business objectives, target audience and technical requirements.

Keywords: mobile, web, application development, Android, power con-
sumption, memory usage, performance, user experience

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Jussi-Pekka Erkkilä

Työn nimi:
Web- ja natiiviteknologiat mobiilisovellusten kehityksessä

Päiväys: 19. helmikuuta 2013 Sivumäärä: 97

Professuuri: Tietoliikenneohjelmistot Koodi: T-110

Valvoja: Professori Jukka K. Nurminen

Ohjaaja: Diplomi-insinööri Antti Saarinen

Viime vuosina mobiilisovellusten ohjelmistokehitys on noussut merkittävään
rooliin ohjelmistoteollisuudessa. Markkinoilla on kuitenkin useita keskenään
yhteensopimattomia mobiililaitteita ja -alustoja. Useiden eri laitteiden ja
järjestelmien tukeminen on ohjelmistokehittäjille merkittävä haaste.

Uudet web-ohjelmointiin tarkoitetut tekniikat, kuten CSS3 ja HTML5, avaavat
uusia mahdollisuuksia mobiilisovellusten kehittäjille. Koska käytännössä kaikki
modernit mobiililaitteet sisältävät Internet-selaimen, web-tekniikoita hyödyntäen
voidaan kehittää mobiilisovelluksia, jotka toimivat lähes kaikissa mobiililait-
teissa. Tämä diplomityö käsittelee HTML5:n ja sen ympärille rakentuvien
web-tekniikoiden käyttöä mobiilisovellusten ohjelmistokehityksessä. Diplomityön
päätavoite on arvioida web-tekniikoiden tarjoamia hyötyjä ja haittoja verrat-
tuna perinteisiin alustakohtaisiin ohjelmistokehitystekniikoihin, sekä sitä, miten
web-tekniikoiden käyttäminen sovelluskehityksessä vaikuttaa mobiililaitteiden
resurssien käyttöön, suorituskykyyn sekä käyttökokemukseen.

Johtopäätöksenä esitetään, että perinteiset laite- ja alustakohtaiset tekniikat tar-
joavat parhaan käyttökokemuksen ja suorituskyvyn mobiilisovelluksille. Sen si-
jaan web-tekniikat tarjoavat nopean ja joustavan tavan tuottaa alustariippumat-
tomia mobiilisovelluksia. Yhteenvetona todetaan, että web-tekniikat tarjoavat kil-
pailukykyisen vaihtoehdon mobiilisovellusten tuottamiseen, mutta paras tekniik-
ka yksittäisen sovelluksen toteuttamiseen riippuu tapauskohtaisesti useasta eri
tekijästä, kuten sovelluksen kohdeyleisöstä, teknisistä vaatimuksista ja kaupalli-
sista tavoitteista.

Asiasanat: mobiili, web, sovelluskehitys, Android, virrankuluts, muistin
käyttö, suorituskyky, käyttökokemus

Kieli: Englanti

iii

Acknowledgements

I would like to thank my instructor Antti Saarinen and my long-time mentor
Matti Saarinen from Whatamap.com Ltd., for all the instructions and guid-
ance during this thesis and my studies as whole. Additionally, I am thankful
for my supervisor Jukka Nurminen for taking time to supervise my thesis.

Also, I want to thank all my friends, colleagues and people from Aalto
University department of Computer Science, who have provided me with
comments, feedback and ideas during this project.

Last, but not least I want to thank my wife Jenni and our sweet children
Elsa and Aarni for their supportive role on background, despite all the long
days and nights I have spent with my studies.

Espoo, Feb 19, 2013

Jussi-Pekka Erkkilä

iv

Abbreviations and Acronyms

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CPU Central Processing Unit
CSS Cascading Style Sheet
CSS3 Third revision of CSS.
DOM Document Object Model
GPU Graphics Processing Unit
HTML Hypertext Markup Language
HTML5 Fifth revision of HTML.
JS JavaScript
JSON JavaScript Object Notation
RAM Random Access Memory
UI User Interface
SDK Software Development Kit
VM Virtual Machine
WWW World Wide Web
W3C World Wide Web Consortium
XML eXtensible Markup Language

v

Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Diversity of Mobile Platforms and Devices 2
1.2 Objectives and research questions 3
1.3 Thesis structure . 3

2 Related work 5

3 Overview of Web and Mobile Technologies 7
3.1 Web Technologies . 7

3.1.1 Structure of web applications 9
3.1.2 JavaScript . 9
3.1.3 AJAX, JSON . 10
3.1.4 HTML5 and related APIs 12

3.2 Mobile Platforms . 13
3.2.1 Android . 13
3.2.2 Apple iOS . 16
3.2.3 Other alternatives . 17

4 Web as a Mobile Application Platform 19
4.1 Advantages of Web . 20
4.2 Capabilities and constraints 21

4.2.1 I/O and hardware access 22
4.2.2 Communications . 24
4.2.3 Data storage and offline content 26

4.3 Support for HTML5 in the mobile 27
4.4 Hybrid solutions . 30
4.5 Security considerations . 31

vi

5 Web vs. Native - Experimental testing 33
5.1 Methods and goals . 33
5.2 Testing environment . 35

5.2.1 Hardware . 35
5.2.2 Test applications . 37
5.2.3 Automated use case . 40

5.3 User Experience test . 40
5.3.1 Implementation . 40
5.3.2 Results . 41
5.3.3 Evaluation . 42

5.4 Performance measurement . 42
5.4.1 Implementation . 42
5.4.2 Results . 44
5.4.3 Evaluation . 46

5.5 Memory usage . 47
5.5.1 Implementation . 47
5.5.2 Results . 48
5.5.3 Evaluation . 50

5.6 Energy consumption . 51
5.6.1 Implementation . 51
5.6.2 Results . 53
5.6.3 Evaluation . 56

6 Discussion and Analysis 57
6.1 Sum up and analysis of results 57

6.1.1 User Experience . 58
6.1.2 Performance . 58
6.1.3 Memory usage . 59
6.1.4 Power consumption . 60

6.2 Pros and Cons . 61
6.2.1 Native technologies . 63
6.2.2 Web technologies . 63
6.2.3 Hybrid solutions . 64

7 Conclusions 65

A Web application source code 73

B Android application source code 78

C Example input data from service 84

vii

D Power consumption graphs 85

viii

Chapter 1

Introduction

Along with the breakthrough of smartphones, mobile application develop-
ment has became increasingly significant area in software industry. The most
popular marketplaces for mobile applications – Apple App Store and Google
Play – combine more than one million third-party applications, whereas num-
ber of application downloads per year is counted in billions. For many brands,
it is more a rule than an exception to have an own mobile application in com-
mon marketplaces.

Usually the mobile applications are written and built using proprietary
tools and APIs (Application Programming Interfaces) provided by mobile
platform vendors. In this thesis we call these native applications. In practice,
a native application is an application that is built and designed for a specific
mobile platform or device – or a set of devices. A native application can not
be installed and run on any other platform, expect the one that it is built
and designed for.

An alternative to native applications are web applications. Web appli-
cations are applications that are run inside web browser. Instead of the
proprietary and the platform specific components, web applications utilize
open and standardized web technologies for implementing functionality and
providing user interface and interaction.

Also, it is possible to combine web and native applications so that a sig-
nificant part of an application is implemented using the web technologies and
packaged inside a native mobile application using web view components. All
these three different approaches include some advantages and disadvantages,
which we are going to discuss in this thesis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Diversity of Mobile Platforms and De-

vices

In contrast to personal computers, for mobile devices no de facto standard
operating system exists. Of course there are few platforms – such as Google
Android and Apple iOS – with significant market shares, but to cover 90% of
all mobile users, one needs to write an application for four different platforms
(Android, iOS, Symbian and Blackberry) [11]. With a high probability, these
numbers will change rapidly in the near future. The market share of Symbian
has been falling down for a while, and on the other hand Windows Phone
is expected to gain more market share shortly. And still there are other
platforms, such as MeeGo and Samsung’s Bada, with millions of devices
sold.

Moreover, it is not only a number of the platforms but also a num-
ber of different software versions and physically different devices that cause
headache for software developers. Hundreds of Android devices are on mar-
ket, with wide variety of hardware specifications. To cover all Android
devices, an application should be compatible with about 10 different An-
droid API versions and be able to adapt on dozens of different screen reso-
lutions. [33]

Of course, other mobile platforms are not that fragmented. Apple iOS,
for instance, is much more homogeneous platform used only in a couple of
different mobile devices. However, to develop and maintain an application
that covers most mobile devices, requires remarkable amount of work and
a wide skill set. And that does not mean only a couple of programming
languages, but also custom development tools, software development kits
(SDKs) and proprietary APIs that the developers should handle – separately
for each mobile platform.

Only software component that is relatively compatible through every plat-
form and mobile device is a web browser. All modern smartphones and
mobile devices are shipped with a web browser that is capable to interpret
JavaScript code and view graphical UI components written using HTML and
CSS. Naturally, there are many drawbacks and issues in writing an applica-
tion by using web technologies but the new features of HTML5 and CSS3
are closing the gap between web applications and native applications in mo-
bile devices. In this thesis we focus more closely on the web technologies
and whether they can solve the problems with fragmentation of the mobile
platforms and the devices.

CHAPTER 1. INTRODUCTION 3

1.2 Objectives and research questions

The main goal of this thesis is to evaluate the capabilities and drawbacks of
the web technologies compared to the native technologies. The question is
not, whether the web technologies can be used to build mobile applications.
They can, plenty of real-life examples exist.

However, we know that the web technologies are not capable for anything.
There are limitations for example in UI-construction, performance and hard-
ware access. We are going to evaluate, how significant these drawbacks are
compared to advantages, that web technologies provide us. Here are the
main questions that we are finding answers to.

1. What are the main advantages of the web technologies and what op-
portunities they provide?

2. How utilizing the web technologies affects on mobile applications in
sense of resource usage, performance and usability?

3. What are the most critical limitations of the web technologies and how
can we address these limitations.

In addition, this thesis provides a comprehensive overview of current sta-
tus of HTML5, JavaScript and other relevant web technologies. We review
the HTML5 support in the latest mobile browsers. Also we discuss about
the differences between the native and the web technologies from both archi-
tectural and design perspective.

The purpose of this thesis is not to compare different mobile platforms
to each other. Instead, we are comparing the web technologies to the native
technologies independent of mobile platform. In examples and the research
part, we will focus primarily on Android. However, the results are evaluated
and discussed in a wider perspective, not only from Android platform’s point
of view.

1.3 Thesis structure

This thesis is structured as follows. After the introduction, we review the
related works that have been done on this area. After that, we evaluate the
current status of the web technologies and the mobile platforms – how mobile
applications actually work from software technical point of view, and how we
define the web technologies.

CHAPTER 1. INTRODUCTION 4

The fourth chapter describes, how the web can actually be used as a mo-
bile application platform, and what are the constraints and the opportunities
of the web technologies. Whereas the fourth chapter is mostly a literature
study, the fifth chapter investigates certain properties of mobile applications
in practice. The sixth chapters analyzes and discusses the results and find-
ings of the fourth and the fifth chapter. The final chapter concludes the
whole thesis.

Chapter 2

Related work

There have been a lot of discussion and debate around HTML5 and mobile
platforms lately. Bloggers and developers have been arguing about pros and
cons of HTML5 and native development technologies. The general consensus
is, that native applications work smoother and provide better look and feel,
whereas development and deployment of web applications is fast and low-
cost [16, 22, 23, 29].

Charland and Leroux (2011) compare native and web technologies in
mobile application development [6]. Their main concerns are performance
and user experience, and they also measure the performance of JavaScript
using Google’s V8 benchmark suite1 and SunSpider JavaScript benchmark2.
They state, that performance of web technologies has not yet attained the
level of native technologies, but the gap is closing.

Mikkonen and Taivalsaari (2011) suggest that “use of open Web appli-
cations will eventually surpass the use of custom native applications on mo-
bile devices” [25]. They list several strengths of the web, such as platform-
independent software code and instant worldwide deployment, to support
their conjecture. They also emphasize the role of HTML5 and open stan-
dards in the future.

There are also pessimistic views. Savage (2012) argues that HTML5
has not met the high expectations, especially in mobile development [38].
He argues that web technologies do not solve the fragmentation problem,
because of incompatibility of the mobile browsers. Also, he emphasizes the
low performance of mobile browsers, and lack of 3D mobile games using
WebGL. While Savage has good points, he ignores the fact that many popular
mobile applications already utilize web technologies3.

1http://v8.googlecode.com/svn/data/benchmarks/current/run.html
2http://www.webkit.org/perf/sunspider/sunspider.html
3http://phonegap.com/app

5

CHAPTER 2. RELATED WORK 6

Mahemoff (2011) argues that web applications are catching up native
applications in performance and features [22]. He also provides results on
how graphics rendering and code execution performance have improved in
the web applications lately. Execution performance was measured using
Google’s V8 benchmark suite whereas graphics rendering was measured by
tracking frames-per-second (FPS) values of different graphical demos running
on HTML5 canvas.

In contrast, Spaceports.io published a study that compares graphics ren-
dering in mobile and desktop browsers [40]. They argue, that graphics ren-
dering in mobile browsers is tens or even hundreds of times slower than
in desktop browsers. As a test suite they used an open-source project Perf-
Marks4. The tests were run using two different iOS and Android devices, and
MacBook Pro laptop with 2.5GHz Intel Core i7 CPU and 16GB of RAM.
However, the study covers only hardware accelerated CSS transforms. Hence,
it is practically a comparison of GPU speeds between mobile devices and a
high-end PC.

In addition, generic programming language comparisons exist as well.
The Computer Language Benchmarks Game5 provides a comprehensive com-
parison of memory usage and performance of different languages. The bench-
marks were run on x86 computers running Ubuntu Linux 12.04 using several
test programs. Every test case was run as as child-process of a Python
script. GTop system information library was used for measuring CPU load,
and memory usage was read every 0.2 seconds. Whereas C outperforms
JavaScript clearly both in performance and memory usage, the study shows
that Google Chrome’s V8 JavaScript engine performed better than other
common scripting languages such as Perl, PHP or Python. Also, in memory
usage JavaScript was more conservative than Java.

Whereas the studies indicate that performance of JavaScript and web
technologies has improved lately, there are few experimental studies specific
to mobile platforms – especially when it comes to comparison of web and na-
tive technologies. Moreover, in addition to performance, in mobile field there
are many other relevant factors, such as usability and resource consumption.
These are the issues that are considered in this thesis.

4https://github.com/sibblingz/PerfMarks
5http://shootout.alioth.debian.org/

Chapter 3

Overview of Web and Mobile Tech-
nologies

In this chapter we present an overview of the web technologies and the exist-
ing mobile platforms. This is not really a focus of the thesis, but a necessary
part to understand the differences between the concepts of web application
and native application.

We focus on software stack of mobile platforms and the environments
where native applications and web applications are run. Also, we review the
programming languages, APIs and tools that are used to produce applications
on different platforms.

3.1 Web Technologies

Since the beginning of 1990s, the World Wide Web has evolved from a simple
text document sharing platform to an enormous content distribution network
and application platform [26]. This change has been evolutionary and more
spontaneous than controlled. New technologies and solutions have been de-
veloped to meet needs and requirements of users.

During the 1990s, many technologies were introduced to provide rich and
interactive contents to web pages. Many of the technologies, such as Re-
alPlayer, Shockwave and Apple QuickTime, were browser plugins to enable
playing multimedia files inside web browsers. Web pages began to appear
more like multimedia presentations than ordinary text pages [41]. Along with
introduction of DHTML (Dynamic HTML) [24], developers were able to cre-
ate interactive web pages with ability to dynamically update the contents
of pages. DHTML is combination of CSS (Cascading Style Sheet), DOM
(Document Object Model) and JavaScript - all of which are still among the

7

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES8

most important technologies for building web applications.
Also, server-side scripting became increasingly popular as the web evolved

to its current form. Technologies such as CGI and PHP made possible to eas-
ily invoke program code on the server-side, according to web client requests.
In practice, this enabled many basic features of current web applications,
such as ”logging in” to web pages and storing users’ data on web services.
Web pages were not longer static but dynamically generated documents de-
pending on request parameters, browser cookies and other variables.

Hence, the web technologies can roughly be divided in two groups: client-
side technologies that are run inside browser or the client application, and
server-side technologies that are run as a service on remote server and can
be called from client. In practice, the difference is fundamental from archi-
tectural point of view. [34]

In this thesis, we focus primarily on client-side technologies. The client-
side technologies are run in mobile devices and can be compared to the
native mobile technologies. The server-side technologies are used in remote
services and can be called from mobile client – no matter which technology
have been used to build the mobile application. Server-side technologies may
also have important role in mobile application development, for example in
outsourcing the computing to a cloud service. However, the technologies that
have been used for implementing the remote services, are not relevant from
client application’s point of view.

In web application development, there are three relevant languages that
we focus on: HTML – especially HTML5, JavaScript and CSS. HTML is a
markup language for defining the UI layout and creating the visual elements
of web application. CSS (Cascading Stylesheet) can be used for styling the
HTML elements and web pages. JavaScript is a programming language for
implementing functionality and interaction between the user and the ap-
plication. Also, fundamental parts of web development are concepts such
as DOM (Document Object Model), AJAX (Asynchronous JavaScript and
XML), JSON (JavaScript Object Notation) and XML (eXtensible Markup
Language). These are used mainly for dynamic contents update and passing
the data between remote services and end-user applications. All of the previ-
ously mentioned technologies are important part of concept of Web 2.0. [30]

Also, there is a bunch of various mobile web frameworks, such as jQuery
Mobile1 and Sencha Touch2. These are application-level extensions and li-
braries that focus on accelerating the web application development, providing
the cross-browser support and improving the usability. However, these are

1http://jquerymobile.com
2http://www.sencha.com/products/touch

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES9

out of the scope of this thesis.

3.1.1 Structure of web applications

In web applications, user interface is usually written in HTML and styled
either by using the specific HTML attributes or CSS. HTML is an open
standard for describing the structure and contents of web pages. The essential
features of HTML are hyperlinks and tags for describing the structure of web
pages, such as headers, paragraphs, images and body text. XHTML refers
to specific version of HTML where the document structure fills both HTML
and XML definitions.

CSS is a style sheet language that can be used for styling the documents
written in markup languages. CSS is commonly used on websites along with
HTML, and it is well supported in most graphical web browsers. Basically,
CSS can be used to describe the look and the formatting of visible HTML
elements, but the new standard CSS3 enables also animated styling such as
transforms, rotations and sliding of HTML elements.

DOM (Document Object Model) is a cross-platform, language- and browser-
independent interface that allows dynamic updating and modifying of the
markup language documents [46]. From a web developer’s point of view,
DOM enables programmatic modification of HTML pages without reloading
the page. The DOM API is implemented in the most web browsers, and can
be called with JavaScript.

3.1.2 JavaScript

JavaScript is a dynamic, weakly typed scripting language with object-oriented
capabilities. JavaScript was initially developed by Netscape in the middle
of 1990s [27]. In this thesis we examine JavaScript primarily as a client-side
web development language, although it can be used for other purposes as
well.

The usual way for writing JavaScript code is to embed the code inside
web pages or in separate js-files which can be included on a HTML page.
JavaScript can be used to manipulate the web page’s user interface and
contents, and create interactivity for web pages without any communication
between a web client and a server [7]. When a website is loaded, the browser
parses, interprets and executes the JavaScript code. Currently, almost all
web browsers include a native support for JavaScript.

Along with the introduction of Web 2.0 and technologies such as AJAX,
DOM and HTML5, JavaScript has became a serious application program-
ming language. If the web will evolve to a main application platform in the

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES10

future, JavaScript may also evolve to one of the most important program-
ming language in the software industry. JavaScript has already gained grow-
ing attention in recent years. Currently, most web applications are written
in JavaScript, and many of those may include thousands of lines of code [42].
Increasing number the of advanced JavaScript libraries are developed rapidly
and JavaScript virtual machine technology is one of the key topics on today’s
browser wars. [6, 27]

One existing problem with JavaScript is performance. Being a high-level,
interpretable language, it is natural that JavaScript code is slower to execute
than corresponding code written in low-level languages such as C or Assem-
bly. Also, JavaScript applications are run in a restricted sandbox inside a
web browser. However, the performance of the JavaScript engines has im-
proved significantly lately [27]. In chapter 5, we experiment the performance
of the JavaScript applications compared to native mobile applications.

3.1.3 AJAX, JSON

AJAX (Asynchronus JavaScript and XML) is a term used to refer a set
of technologies that can be used to make websites look and feel more like
dynamic applications instead of static pages. In classic concept, all the inter-
action between a web server and a client was made by accessing to a specific
URL and loading the web page. In contrast, AJAX can be used to access
remote web services asynchronously on background. The web page is not
reloaded but only parts of it are updated once the response is received.

According to Garret (2005) [10] definition, AJAX consists of the following
technologies:

• HTML and CSS for presentation

• Dynamic displaying and interaction with DOM (Document Object Model)

• XML for data interchange

• XMLHttpRequest for asynchronous HTTP requests and data retrieval

• JavaScript for binding everything together

XML is not actually the only format for data interchange. The technol-
ogy itself does not place any restrictions on which format the data should be.
However, the XML have been defacto standard for a long time. Recently
JSON (JavaScript Object Notation) has became a considerable alternative.

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES11

JSON objects are less redundant as well as more efficient to parse and gen-
erate [44]. Also, JSON suits well to be used with JavaScript because JSON
objects can be easily assigned to JavaScript arrays.

Below we present a graph that visualizes the differences of an AJAX call
and a classic HTTP request.

Figure 3.1: Normal web page request compared to asynchronous AJAX call.

Here the AJAX engine is responsible of sending an HTTP request and
receiving the response. Once the response is received, a specific callback-
function is invoked where the response is processed and the DOM is manip-
ulated accordingly. Compared to the classic web model, AJAX call does not
improve the latency of data transfers as every AJAX call still requires a new
TCP connection and HTTP handshake.

Updating the contents of web application asynchronously improves the
user experience, since the operation is non-blocking and user can meanwhile
use the application normally. Also, by using AJAX the amount of data
transferred between web application and remote services can be optimized.
In overall, AJAX has a significant role in bridging the gap between native
applications and web applications, especially in sense of user experience and
interactivity. [19]

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES12

3.1.4 HTML5 and related APIs

HTML5 is a fifth revision of the HTML standard [48]. As its predecessors,
HTML5 is a markup language for describing and structuring the web pages.
The new features of HTML5 turn the web to a highly potential application
platform. In contrast to proprietary web technologies such as Adobe Flash
or Microsoft Silverlight, HTML5 is an open standard and will eventually be
natively supported by the most web browsers without external plugins.

The new features of HTML5 include both new syntactical features - such
as video and canvas elements and also APIs (Application Programming In-
terfaces) which can be called with JavaScript. These APIs include immediate
mode 2D drawing on canvas elements as well as timer-based callbacks and
offline applications with application cache. [49]

The standardization of HTML5 is not yet finished. The specification work
is being done by W3C HTML Working Group and WHATWG. Both working
groups have published own specifications, but the contents of these are quite
similar. However, the official standardization is expected to take still years
which may cause problems since the software vendors are writing mutually
incompatible implementations. [25]

In addition, along with HTML5 many other related JavaScript APIs have
been specified as well. These APIs are not part of W3C HTML5 specifica-
tion, but those are compatible with upcoming HTML5 standard and may be
referred as HTML5 APIs in informal contexts.

Many of the APIs are still W3C’s internal drafts whereas part of them are
stabilized and implemented in most web browsers. The details are outside
of this thesis’ context, but we list here the W3C working groups that are
relevant from this thesis’ point of view and briefly describe their objectives
and main features.

• W3C Device APIs Working Group. W3C Device APIs Working
Group is specifying the APIs that enable web applications to interact
with the device services such as calendar, camera and battery state.
APIs include Battery API, Network Information API, Vibration API,
media capture API and several others. [51]

• W3C Geolocation Working Group. W3C Geolocation Working
Group defines an interface for reading the sensor data of the device
in order to provide real-time location information for location-aware
web applications. APIs specified are Geolocation API that is already
available in most browsers, and DeviceOrientation Event Specification
that provides access to compass and accelerometer data. [52]

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES13

• W3C Web Applications Working Group. WebApps Working
Group is developing the standard APIs for client-side development to
enable richer web applications. The work include File APIs for access-
ing to a local file system, Web Sockets API for two-way communication
between a remote host and a client, Web Worker API for thread-like
operations and many others. [50]

• Khronos Group WebGL Working Group. WebGL Working Group
specifies a web API that enables interactive, GPU accelerated 2D and
3D graphics rendering using HTML5 canvas elements. [17]

• W3C Web Real-Time Communications Working Group. Web
Real-Time Communications Working Group defines a real-time peer-
to-peer communication channel between web browsers. [55]

Together with related web standards, the HTML5 will extend the possi-
bilities of the web as an application platform in a completely new way. Web
browsers are expected to support interactive graphics rendering, web sockets,
video, audio, offline contents and many other features, even 3D acceleration.
Hence, this makes possible to port almost any native application to a web
browser platform. [42]

Despite the lack of official standards and final specifications, HTML5,
WebGL and many other APIs are relatively well supported by latest versions
of the major web browsers. We will focus more closely on the HTML5 support
in the mobile devices at section 4.3.

3.2 Mobile Platforms

This section describes the common mobile platforms from application devel-
oper’s point of view. As one of our goals is to compare the mobile platforms
to the web, it is useful to understand the principles and the basic structure
of mobile application platforms, and how end-user applications are imple-
mented.

We are keeping in practice and focusing primarily on two of the main
mobile platforms, Apple iOS and Google Android. Also we briefly overview
the alternative platforms at the end of this section.

3.2.1 Android

Android is an open-source software stack and operating system for mobile
devices. It is developed by Open Handset Alliance which is a consortium

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES14

of many high technology companies, led by Google. [3]. During the recent
years, Android has bypassed Symbian as the dominant smartphone platform.
As mentioned earlier, currently around 60% of all smartphones sold globally
are running on Android [11].

The Android platform is a complete software stack and operating system
that runs on Linux kernel. It consists of several layers, including low level li-
braries, Android Runtime and application framework. The low level libraries
are native libraries part of Linux kernel, written mainly in C/C++. The ap-
plication framework provides a Java interface to the libraries. An overview
of Android software stack is visualized in Figure 3.2.

Figure 3.2: Android software stack

All end-user applications are written in Java and they utilize the ap-
plication framework. Applications are run inside Dalvik Virtual Machine
(commonly referred as DalvikVM). DalvikVM is a register based virtual ma-
chine and it executes Dalvik Executable (.dex) files that are optimized for
low memory footprint [9]. Every application is run on its own instance of
DalvikVM and multiple instances can be run simultaneously [37]. These fea-

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES15

tures of DalvikVM enable efficient application level multi-tasking. Also it is
good to notice, that Android applications running inside DalvikVM are not
actually native in traditional sense, since they are running inside a virtual
machine. However, from application developer’s point of view, these can be
referred as native applications. Below we present a table about the relevant
information of the Android platform.

Devices Hundreds of mobile devices, including many Samsung,
HTC and Google smartphones and several tablets.

Versions More than ten releases, a few major versions that cover
most of all Android devices.

Market share 64.1% of devices sold in Q2 / 2012. [11]

Development
languages and
tools

Java, Android SDK. Development tools available for
multiple platforms. Applications may be executed ei-
ther on real devices or emulator.

Application dis-
tribution

Through Google Play or as idenpendent APK packages
(requires allowance for 3rd party software installation).

Table 3.1: Android platform properties from software developer’s point of
view.

In this thesis, we do the most of experimental research using Android
device Samsung Galaxy S. The reason for this is that Android is the most
popular smartphone platform in the world and it is relatively open. Hence,
measuring the certain properties – such as memory footprint and battery
consumption – is straightforward compared to the alternatives that tend to
be relatively closed platforms.

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES16

3.2.2 Apple iOS

Apple iOS (formerly known as iPhone OS) is an operating system initially
published for the first version of iPhone in 2007. Currently iOS is used as
platform for Apple’s iPad and iPod devices as well. The latest published
version of iOS is 6.0. After Android, iOS is the most popular mobile device
platform with about 19% market share in Q2 / 2012. [11]

Compared to Android, iOS is quite restricted platform from application
developer’s point of view [4]. Certain functionalities are disabled either be-
cause of architectural limitations or Apple’s application policy. However,
these policies have resulted in better security as we will see in section 4.5.

Apple provides application development tools for iOS, including Xcode
(graphical IDE for application development), SDK, Interface Builder for UI
design and implementation, as well as simulator for testing and running
applications without real devices. The primary development language is
Objective-C, which is an extension to C. Thus native C can be used as
well. [12]

Figure 3.3: iOS architecture layers and some of their features.

Architecture of iOS consists of four layers: Core OS, Core Services, Media
and Cocoa Touch. The higher-level frameworks provide high-level abstrac-
tions of certain technologies and functionalities that are implemented on

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES17

lower level [5]. However, all the layers are accessible from application code
with certain limitations. [4, 5]

Installing uncertified third-party applications on iOS devices is disabled
because of Apple’s application policy. Hence, the only way to develop and
publish applications on iOS is joining iOS Developer Program and submit-
ting the applications on Apple App Store. Apple has defined rather strict
requirements for the applications that are published in App Store.

Devices Apple’s iPhone, iPad and iPod touch, including different
hardware versions

Versions Six major versions, several minor updates. No official
statistics, approximately 95% of devices run iOS 5 or
iOS 6 [39].

Market share 18.8% of devices sold in Q2 / 2012. [11]

Development
languages and
tools

Obective-C, iOS. Tools available only for OS X. Applica-
tions may be executed either on real devices or emulator.

Application dis-
tribution

Only via AppStore, reviewed and approved by Apple.

Table 3.2: Apple iOS from software developer’s point of view.

3.2.3 Other alternatives

Since Android and iPhone combine roughly around 80% of smartphone mar-
ket share, other alternatives exist as well. These include Windows Phone,
Symbian, Samsung Bada, RIM’s Blackberry OS and a few others. Most no-
tably, both Blackberry OS and Symbian possess market share of around 6%.
However, as Nokia is migrating to Windows Phone as its primary smartphone
platform, numbers of Symbian are expected to fall in near future as well as
Windows Phone is expected to increase its market share.

We do not go in details or market analysis here, but we present a simplified
table listing the basic information of the alternative mobile platforms.

Point to note here is that Firefox OS, Open webOS (formerly HP webOS)
and MeeGo support the web technologies as an official application develop-
ment technology. Also, all of them are relatively open Linux-based mobile
platforms. However, the future views of the projects are still unclear. Nokia

CHAPTER 3. OVERVIEW OF WEB AND MOBILE TECHNOLOGIES18

Platform Developer Development technologies

Windows Phone Microsoft .NET

Symbian Nokia / Accen-
ture

C++ / Qt, Java, Python, widgets using
Web technologies

Bada Samsung C++

MeeGo Nokia C++ / Qt, QML, Python, Web tech-
nologies

Blackberry OS RIM Java (J2ME)

Open webOS HP, Community Web technologies, C/C++

Firefox OS Mozilla, commu-
nity

Web technologies (JavaScript,
HTML5)

Table 3.3: Alternative software platforms for smartphones.

abandoned development of MeeGo, but the project was ultimately contin-
ued by a new start-up company Jolla Mobile. Hewlett-Packard, on the other
hand, announced that they will publish the webOS under open-source license
and they plan to contribute to the project in the future as well [13]. Fire-
fox OS is not officially published or distributed on any device. The project
is under development, but is has been demonstrated on several Android-
compatible devices.

Chapter 4

Web as a Mobile Application Plat-
form

In the world of desktop computers, the web has already gained a strong
position as an application platform. Back to 1990s, users had to download
or buy their applications or games, and install those on their computers.
However, since the broadband connections became common for end-users in
the beginning of 2000s, the web has evolved at a rapid pace. Currently many
applications – especially those related to social media – are published as a web
services. This is actually what both end-users and application distributors
prefer.

Web is user-friendly. Whereas installing applications on a computer might
be difficult task for non-technical users, everyone can browse the web. On
the other hand, service providers can efficiently gather data about users of
online applications and that way optimize and target advertisement better,
and generate more revenue.

Google already provides a full office suite as a web application. Web is
full of smallish games and entertainment services, online-TV services, social
media services and many application like services. Actually, there are quite
few applications that users really need to install their computer any more –
in addition to web browsers and plugins. Heavy 3D-games are among these,
as well as applications for syncing with mobile phones and digital cameras,
watching DVDs and manipulating images.

The reason is that all these are closely related to computer hardware -
such as USB connection, DVD drive or graphics adapter. Web applications
are – for really good reasons – executed inside a restricted environment of a
web browser. Hence, web applications can not access to the USB-connected
devices or DVD-drive. However, even this may change in the future, since
most mobile devices may synchronize the data with cloud services through

19

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 20

mobile broadband connections. In addition, WebGL and HTML5 will enable
hardware accelerated graphics in web browsers.

In the world of mobile applications, things are still different. Usual way
for performing a specific task wit a mobile device is to download and install
the corresponding application from a store, such as Google Play or App Store.
The application distribution via application stores is strictly controlled by
the vendors. Companies such as Apple and Microsoft want to remain in
control, which kind of applications can be distributed on their platform. For
instance, Microsoft has specified strict policies for the functionality and the
appearance of certified Windows Phone applications [31].

Naturally, web applications for mobile devices exist as well. However, the
web as an environment draws a few constraints for mobile applications, both
in usability and functionality. In this chapter, we investigate the capabilities
and constraints of the web as an application platform; what is possible, what
is not and how can we address the existing issues. Also, we review the
HTML5 support on mobile devices and evaluate the compatibility of the
web browsers. Also, when talking about the web, we naturally need to pay
attention to security concerns that are discussed in the last section of this
chapter.

4.1 Advantages of Web

Web applications can be run practically on any device that includes a modern
and graphical web browser. This is the main reason for the potential and
the increasing popularity of the web as a platform. As we have pointed
out in previous chapters, the fragmentation of mobile devices, platforms and
platform versions are a significant problem for software developers. Writing
an application that runs on every platform on the market requires a vast
amount of resources, let alone that the mobile platforms are all the time
under continuous development. New platforms and versions are published in
a rapid pace. Web browsers, however, are quite well backwards compatible.
Thus, it is likely that applications written using web technologies will work
flawlessly on upcoming mobile devices as well.

A small mobile software company may support only one or two mobile
platforms to achieve sufficient target group. Nevertheless, other parties, such
as public sector or IT departments, may be required to provide a support for
a much larger device base. On these situations, the web may be the most
reasonable way to achieve the goal. Google’s Vice President for Engineering,
Vic Gundotra has said that ”even Google is not rich enough to support all
different mobile platforms” [6]. Hence, for a small business, web technologies

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 21

are excellent way to cut development costs and save the resources.
Moreover, web technologies fit well for current trends of software industry.

Application lifecycles are short, development is rapid and requirements are
changing often [42]. Being a lightweight and dynamic language, JavaScript is
well capable for this concept. There is no need for bloat SDKs or development
tools: all that one needs to start development is a text editor and a web
browser. Building a user interface with HTML is fast and flexible and adding
functionality with JavaScript is straightforward. Changing and updating
web applications is also fast and lightweight process, compared to native
applications that need to be recompiled and submitted to application stores.

The web provides advantages for end-users as well. Compared to native
ones, web applications are always up-to-date. There is no need to download
and install updates. In a fact, there is no need for installations at all. Web
applications are not wasting storage space of mobile device: they are always
available through Internet connection independent of time, location and de-
vice. All that user needs to run web application is Internet connection and
a device with capable web browser.

In an ideal world, developer only needs to write a web application once,
test it on one web browser and publish on web, and the application should run
flawlessly on every platform. However, this is not the reality. Browsers have
certain differences that may cause pain for a developer. For example, small
differences in interpretation of style sheet may totally break down the user
interface on one browser, while it still may work on another. Also, different
devices have different screen resolutions and capabilities, such as support for
zooming or multi-touch events. These are the issues that we discuss in the
following sections.

4.2 Capabilities and constraints

The capabilities and possibilities of the web as an application platform can
not be exactly specified. The web itself is nothing more but HTTP protocol
and set of rules and standards to define how the hypertext documents should
be interpreted and presented to end-user. However, it depends on a browser,
how web applications actually appear and work.

Here, we define the capabilities as features and functionalities that are
working and usable in practice at least in one environment and one use case.
The constraints may be either platform- or browser-specific or general. For
instance, web applications can not invoke low-level system calls or launch
native applications – expect via possible security vulnerabilities. This is
a general constraint. On a few platforms and browsers, web applications

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 22

are able to catch and handle multi-touch events. However, all devices and
platforms do not support multi-touch at all, which is a platform specific
constraint. On the other hand, some platforms may include a support for
multi-touch but the corresponding web browser may not deliver the multi-
touch events to web applications, but catches and handles the events itself.

In addition to technical restrictions – such as lack of full HTML5 support
on web browsers – web applications also have some practical drawbacks.
Generally, in order to use web applications, Internet connection is required.
Thus, availability of web applications depends on Internet connection which
may be a problem outside the local operator coverage area (high roaming
costs in foreign countries), in the extreme conditions (no network available)
or in the large public events, when the network is congested. Also, the
primary way to monetize mobile applications is selling those in application
stores. In case of web applications, this is not an option as e.g. Google
Play and Apple App Store only accept native applications in their catalog.
To address these issues, web applications can be packaged and distributed
as native applications. However, this in turn requires manual and platform-
specific work by developers. Application producers may also find alternative
ways for monetizing, such as advertising.

4.2.1 I/O and hardware access

Web applications are run inside web browser’s sandbox. Thus, the input
events are handled by the web browser and delivered to web application only
if the web browser does not catch the event itself. For example, web applica-
tion can not listen the hardware buttons of Android devices. Functionality
of these buttons is defined on lower level of operating system and the click
events are never delivered to the web applications.

Moreover, by default web applications have no access to hardware sensors
such as GPS, NFC, compass or camera. Also, the mobile device services
such as calendar, messages and contacts are unavailable. Animations and
page transitions written in JavaScript can not utilize GPU for rendering.
However, these are among the problems that HTML5 and related APIs are
going to address. As mentioned earlier in this thesis, W3C’s working groups
are specifying the APIs that enable access to almost any interface in mobile
devices. Part of these APIs are already implemented and widely used whereas
many of them are still at working draft state. Here we list the common
services and functionalities of mobile devices and availability of those in web
applications. All API specifications mentioned below are published by W3C
working groups expect WebGL which is developed by Khronos Group [17].

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 23

Device or service Availability

Accelerometer, com-
pass

Specified in DeviceOrientation Event Specifica-
tion. First public draft is available.

Ambient light sensor Public working draft available.

Bluetooth No specification available.

Camera, microphone Access specified in API for Media Capture and
Streams, which is not yet widely implemented.

Contacts, Calendar Public working drafts available as Contacts API
and Calendar API.

Dialer No specification available. However, some
browsers support “tel:” protocol in hyperlinks for
opening the dialer.

Graphical Processing
Unit (GPU)

Hardware accelerated graphics provided by
WebGL, few early implementations are available
in latest browsers.

Touch and multi-
touch displays

W3C’s Candidate Recommendation available for
touch events [57]. Implemented and supported on
several platforms.

Near Field Communi-
cations (NFC)

No specification available.

Temperature, humid-
ity, pressure

Internal drafts published by Device APIs Working
Group.

Positioning Obtaining the real-time location of device is spec-
ified in Geolocation API. Feature is widely imple-
mented and used.

Table 4.1: Availability of the common device sensors in web applications.

It is worth noticing that usually web applications can not access straight
the raw sensor data, even though the hardware would be accessible through
web APIs. For example, DeviceOrientation Event API provides high level
information about device orientation, motion and acceleration – not the raw
data of compass, gyroscope or accelerometers [53]. However, accessing the
high-level web APIs is easy and straightforward for web developers. In fol-
lowing example we read device position using Geolocation API.

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 24

1 var success = function(e) {

2 alert("You are at " + e.coords.latitude + ", " + e.

coords.longitude);

3 };

4 var error = function(e) {

5 alert("Unable to retrieve position!");

6 };

7 if(navigator.geolocation) {

8 navigator.getPosition(success , error , {

9 enableHighAccuracy: true

10 });

11 }

Listing 4.1: Getting position through JavaScript Geolocation API

In the listing above, we define callback functions “success” and “error”.
These are invoked depending on whether the position was obtained success-
fully or not. If the browser does not support Geolocation API, variable
“navigator.geolocation” is undefined. The parameter “enableHighAccuracy”
indicates for the API that we want a location with high accuracy, which
means usually obtaining the data using GPS. Otherwise the device may pro-
vide data using some other method – such as mobile cell positioning – that
might be faster but also less accurate.

Many of the previously mentioned APIs are still in specification stage.
Standardization and implementation processes may take years, although
some experimental implementations may be available.

4.2.2 Communications

Along with HTML5, new APIs have been defined for improving client-server
communications as well as for enabling peer-to-peer communication between
web browsers. These API definitions are WebRTC [54] and WebSockets [56].

The purpose of WebRTC is to enable real-time communications - such as
video and voice calls - directly from browser to browser over web. WebRTC
API is being specified by W3C WebRTC Working Group, whereas IETF
RTCWEB group is responsible of defining the protocols that together with
API will enable the real-time web communications.

On the other hand, WebSockets enable a real-time bi-directional commu-
nication channel between a web client and a server. The WebSockets API is
specified by W3C Web Application Working Group, whereas the protocol –
which is independent of HTTP – is specified in IETF RFC 6455 [15].

Compared to traditional HTTP or AJAX calls, where a client makes the
request and waits the response from server, an open WebSocket is a full-

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 25

Figure 4.1: On left side, periodic HTTP requests for data updates. On right
side, bi-directional WebSocket for delivering updates with low delay.

duplex communications channel with no need for polling data. This is a
remarkable difference to the traditional request-response convention as illus-
trated in figure 4.1. This approach will both decrease the latency and reduce
the amount of network traffic. Low redundancy implies that less computing
is needed for handling and parsing the data. The lower latency results as bet-
ter usability in the client application due to faster interaction between client
and service [32]. Because of lack of HTTP headers, WebSockets may provide
more than 400:1 reduction in unnecessary traffic as well as 3:1 reduction in
latency [20].

Using WebSockets in web application is easy through JavaScript API.

1 var socket = new WebSocket("ws://<address >:<port >");

2 socket.onopen = function(e) {

3 // socket opened

4 this.send("Hello server , cheers from client!");

5 };

6 socket.onmessage = function(e) {

7 alert("data sent by server: " + e.data);

8 };

9 socket.onclose = function(e) {

10 // socket closed

11 };

Listing 4.2: Initializing a WebSocket connection using JavaScript API

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 26

As an alternative technology, long HTTP polling allows emulation of
server-sent events from a server to a client. The client requests information
from the server as normal HTTP requests. However, if the server does not
have the information, it does not send the response. Instead, it holds the
request and waits until the requested information becomes available. This
technology, also known as Comet, utilizes AJAX to emulate server push
mechanism. Long polling may achieve almost as low latency as WebSock-
ets [35], but it requires that client actively maintains an active HTTP con-
nection to the server. However, long polling does not require support for
HTML5 and WebSockets by the server nor the client.

4.2.3 Data storage and offline content

Traditionally, the only way to store data on a web client have been cookies.
Cookies are stored in a web browser and are sent to a remote service inside
HTTP headers. Cookies are accessible both from the server and the client,
and they are still very common way to save session state in web service.

However, HTML5 opens new possibilities in this area as well. The Web-
Storage interface defines two attributes: Local Storage and Session Storage.
Much like cookies, WebStorage objects are simple key-value pairs with usual
methods for getting and setting value for key and removing a key [45].

WebStorage objects are very similar to cookies, but there are a few re-
markable differences as well. WebStorage objects are accessible only from web
client and the objects are not delivered over every HTTP request. Whereas
size of cookie object is defined to be at most 4096 kilobytes [14], most
browsers support storage objects with size of five megabytes [45]. The real
numbers depend of course on browser-specific implementations, but com-
monly WebStorage objects may be much larger than cookies.

As mentioned before, there are two types of WebStorage objects. Whereas
Session Storage is window- and session-specific temporary storage, Local
Storage is a long-standing data store. Basically, data stored in a Local Stor-
age object is written on device mass memory and expected to stay available
until it is explicitly removed. Session storage, on the other hand, is emptied
as soon as the browser window is closed.

HTML5 enables also offline web applications and use of Web SQL database
for saving structured information in web client. However, the development
of Web SQL Database specification is not active anymore, although the draft
versions have been implemented in many web browsers. The reason for stop-
ping the specification work was that all the vendors implemented the same
SQLite backend, whereas W3C needed multiple independent implementa-
tions to continue with the specification work [47].

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 27

4.3 Support for HTML5 in the mobile

In this section we review the current status of HTML5 support in the main-
stream mobile platforms and browsers. It is worth noticing that this an area
that changes constantly. New versions of mobile platforms and web browsers
are being published all the time. Hence, the information presented in this sec-
tion might be outdated. To obtain the latest information it is recommended
to use some existing web service to check the up-to-date status.

The data was gathered from The HTML5 Test1 which evaluates every
web browser that accesses to the page. The service awards points from every
supported feature of HTML5 and related API specifications. The maximum
number of points is 500 plus bonus points. Bonus points are awarded from
supported data formats, such as audio and video codecs, that are not part
of HTML5 specification.

The tests were run with the following hardware and the software set-up:

• Samsung Galaxy S running Android 2.3.3 Gingerbeard. The HTML5
test run with the default browser, Opera Mobile 12.00 and Firefox
Mobile 16.

• Nokia N9 running Meego Harmattan PR1.3. The HTML5 test run with
Nokia Browser 8.5.0.

• Apple iPhone 4 running iOS 6.0. The HTML5 test run with Mobile
Safari.

• Nokia Lumia 800 running Windows Phone 7.5. The HTML5 test run
with Internet Explorer Mobile 9.0.

The HTML5 test does not cover all features such as WebRTC or De-
vice APIs. In practice, these are not yet supported in any mobile plat-
forms, although some experimental implementations exist in the latest desk-
top browsers.

The results are presented at Table 3.1. The table shows overall scores for
each platform, and the support for most features of HTML5 and the related
APIs. The results clearly show us the recent evolution: the recent browsers,
Opera Mobile 12, Firefox 16 and Mobile Safari iOS 6.0, include a significantly
better support for the advanced web technologies, than the older browsers.
The only difference is IE Mobile 9 in Nokia Lumia 800, which is the most
restricted browser, despite the fact that it is newer than Android 2.3.

1http://www.html5test.com

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 28

As comparison, on desktop computers the most popular browser Google
Chrome 448 points (version 23), whereas Firefox 17 achieves 392 points. The
evolution of HTML5 support in mobile browsers is illustrated in figure 4.2.
Both data and the graph has been received from html5test.com.

1In Opera Mobile 12, WebSocket API is supported but not enabled by default.
2Firefox 16 has support for WebWorkers but not for SharedWorkers.

Feature Android
2.3.3

MeeGo
PR1.3

Opera
Mobile 12

Firefox
16

iOS 6.0 WP 7.5

Scores +
bonus

189+1 286+12 369+11 372+9 360+9 138+1

HTML5 Can-
vas

OK OK OK OK OK OK

Audio and
video

OK OK OK OK OK OK

Offline appli-
cations

OK OK OK OK OK -

Geolocation OK OK OK OK OK OK

WebGL - - OK OK - -

WebSocket - OK OK1 OK OK -

FileReader
API

- - OK OK OK -

FileSystem
API

- - - - - -

WebStorage
API

OK OK OK OK OK OK

IndexedDB
API

- - - OK - -

Workers - OK OK Partial2 OK -

WebCam - - OK OK -

Table 4.2: The result table of HTML5 test.

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 29

HTML5test.com	score	over	the	years

Android Bada Blackberry Chrome Dolphin Firefox iOS
Maemo Nokia Opera S60 Tizen webOS Windows

Jan	2010Jan	2009 Jan	2011 Jan	2012
0

100

200

300

400

500

600

Sc
or
e	
(p
oi
nt
s)

Sc
or
e	
(p
oi
nt
s)

Figure 4.2: Development of HTML5 support on mobile browsers.

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 30

4.4 Hybrid solutions

In all situations and use cases, online web applications are not a suitable
solution. The reason for this may be either technological limitations or prac-
tical needs. Application may require access to a certain service or hardware
sensor – such as NFC – that is not accessible through the JavaScript APIs.
In addition, users may want to have the application installed permanently
on their mobile devices and to be able to run application offline. HTML5
provides a way to do this, but the application is installed inside the browser,
not as standalone applications which can be installed and removed as usual.
Also, producers may want to advertise and monetize their applications by
submitting them to App Store or corresponding marketplace. All these sce-
narios require that applications are distributed in a native, platform-specific
format.

However, the developers may still utilize the advantages of web tech-
nologies in application development. The common platforms, such as iOS,
Android and Windows Phone, allow embedding so called “web views” inside
native applications. Web view is a component of a native application that is
able to display HTML pages and interpret JavaScript code within the lim-
its of the platform. Hence, by building a native application with a single,
fullscreen web view, one is able to write a native application by using pri-
marily web technologies. In short, a hybrid application is a web applications
packaged inside a native application. Creating a web view is straightforward,
the following example is for Android:

1 WebView myWebView = (WebView)findViewById(R.id.webview);

2 myWebView.getSettings ().setJavaScriptEnabled(true);

3 myWebView.loadUrl("file :/// android_assets/index.html");

There are also frameworks available for accelerating the hybrid applica-
tion development on mobile platforms. As an advanced and the most com-
mon example, PhoneGap1, which is also distributed as Apache Cordova2.
PhoneGap is an open-source project and it aims to enable native application
development using web technologies in most mobile platforms. PhoneGap
utilizes the web views, but it also allows developers to easily write native
plugins for web applications. These plugins allow web application to execute
and communicate with the native code written by developers.

Hence, PhoneGap combines the advantages of web and native technolo-
gies. An application can be packaged and distributed as a native application,

1http://www.phonegap.com
2http://incubator.apache.org/cordova/

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 31

it may include the functionalities available only in native applications, but
it still can be implemented mostly by using web technologies.

However, the hybrid approach requires building and publishing applica-
tions separately for every platform. Also, all the minor and deprecated mobile
platforms may not be supported. Nevertheless, the hybrid solutions provide
a compromise solution that may be a reasonable option in many cases.

4.5 Security considerations

When evaluating the web technologies, security must always be considered.
Especially in the case of HTML5 and new APIs that enable access to mobile
device sensors and even filesystem. Also, the new communication mecha-
nisms – WebRTC and WebSockets – are potential targets of attackers in the
near future.

In the mobile world, most malware and other threats are targeted against
Android [8]. Moreover, many attacks already exist for web applications using
Android WebView [21]. This is natural, as Android is the most popular
smartphone platform – and much more open than main competitors Apple
iOS and Windows Phone. Also, distributing malware on Android is much
easier than on iOS, since Apple does not allow third-party applications to be
installed on iOS devices. However, web applications may potentially make a
difference here. Web applications are not only accessible from every device
but the same code also runs on every device. This is why the security of web
applications is really important factor now and in the future.

One problem with HTML5 and related API specifications is lack of of-
ficial standards. Many of the API specifications are still at draft stage.
Hence, the proper security features and models may not be specified and
validated, although many of the APIs are already implemented in the latest
web browsers. Moreover, the existing security features may not have been
audited and confirmed to be trustworthy.

The valid and secure specifications are only part of the solution. The
specifications must also be implemented properly. Thus, web browser vendors
are in important role when implementing APIs and web browser sandboxing.
Since web applications have potentially access to private information of user
– such as location, filesystem and even contacts – it is important that user is
aware and in control of which device interfaces web applications can access [1].

Among HTML5 and new web APIs, the most critical new features from
security perspective are the new communication and data storage technolo-
gies. For instance, communication technologies WebRTC and WebSockets,
utilize totally new protocols, other than HTTP. WebStorage, on the other

CHAPTER 4. WEB AS A MOBILE APPLICATION PLATFORM 32

hand, enables new ways to store persistent data on web client’s memory.
Careful implementation is required from all different parties: browser ven-
dors, web service developers and web application developers.

Chapter 5

Web vs. Native - Experimental
testing

To answer our actual research questions, we conducted a set of experimen-
tal studies. The main purpose of our studies was to find out how the web
technologies differ from the native technologies as an application develop-
ment technology. We studied following properties of both native and web
applications:

• Resource usage on mobile devices, including energy consumption and
memory footprint

• Raw computing speed

• User experience

This chapter is structured as follows. The section 5.1 presents the re-
search methods, the purpose and the motivation for each separate study.
The section 5.2 describes the testing environment including the hardware
and the software used in each test case. The following sections describe the
implementation and present the results and the evaluation of each research
phase. Further discussion and analysis takes place in chapter 6.

5.1 Methods and goals

As mentioned, the research part of this thesis consists of a set of experi-
mental studies. The experimental tests were run on real devices using real
applications. The ultimate goal of the study was to find out, how well web
applications perform on mobile devices compared to native alternatives. At

33

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 34

first we state, that to be a considerable alternative to native applications,
web applications should fill at least the following requirements.

1. Common technical requirements must be filled, such as being able to
read the device sensors, display graphics and interact to touch events.

2. Performance level of web applications should not be considerable worse
than on native applications. That is, web applications should function
and run smoothly.

3. User experience must be sufficient, so that users are willing to use web
applications.

4. Web applications must not ruin the device performance, such as slow
down the background tasks or cause memory leaks.

5. Since the battery life is one of the key factors in the mobile field, web
applications should not significantly increase the energy consumption
of mobile devices.

In the previous chapters, we reviewed technical capabilities of the web
technologies. As pointed out, HTML5 and related API specifications extend
the capabilities of web applications significantly. Moreover, hybrid solutions,
such as PhoneGap1 can be used to fill technical requirements if necessary.
Thus, the requirement 1. is not a problem.

Measuring the performance of web applications is not simple. Mobile
applications do not usually need to solve heavy computational problems. In-
stead, for mobile users it is relevant that applications work smoothly and
nicely, the response times are short and interaction is fluent. However, mea-
suring the response times of touch events, or fluency of the interaction on web
applications is not easy. User interaction, such as touch events, are handled
and processed primarily by web browser and other lower-level components.
Thus, touch events are invoked on a web application with a delay, which may
depend on low-level system architecture. Thus, measuring the responsiveness
of web applications in different mobile platforms is difficult.

Hence, to evaluate performance of web technologies we implemented two
separate studies: a user experience study to evaluate smoothness and over-
all fluency of web applications, and a performance test to measure the raw
computing speed. Both were experimental tests on real devices. In the case
of user experience test, the data was gathered as user feedback, whereas the
computing performance was measured using a specific application.

1http://www.phonegap.com/

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 35

The resource usage tests were also run on real hardware and software
with a special power meter gathering the data. The purpose was to find out
how the web and native solutions consume the device resources: memory and
battery. The exact results are available as megabytes (MB) and milliwatts
(mW)

5.2 Testing environment

In this section we present the testing environment we used in the research
part of this thesis. The environment covers the devices, system versions and
settings, as well as the applications we implemented for the measurements.

5.2.1 Hardware

All the tests, except the user experience study, were executed using four
different devices described in the table 5.2.1.

Device Model number Android version

Samsung Galaxy S GT-I9000 2.3.3 Gingerbread

Motorola Milestone 2 MotoA953 2.3.4 Gingerbread

Sony Xperia J ST26i 4.0.4 Ice Cream Sandwich

Samsung Galaxy S III GT-I9300 4.1.1 Jelly Bean

Table 5.1: Overview of the test devices

During the tests, the devices did not include SIM card. GSM, Bluetooth
and all automatic updates were disabled. Internet connectivity was obtained
via WiFi. Only exception was power consumption study, which was im-
plemented separately for WiFi and cellular network, since the data transfer
technology has a significant effect on power consumption. Also, factory reset
was done for each device before the studies to make sure that environment
was clean and conditions were similar for each test case. Each device was
running an official Android version either shipped with the device or provided
as an update by the manufacturer.

User experience test was different, since the study was conducted by al-
lowing participants to evaluate a native application and a web application on
two equal devices. Hence, for user experience test we used Samsung Galaxy
S and Google Nexus S (manufactured by Samsung). These devices are very
similar with practically same hardware specifications and software versions.

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 36

Component Model specification

CPU 1 GHz ARM Cortex A8

GPU 200 MHz PowerVR SGX 540

Memory 512 MB RAM

Display 4.0” 800x480 pixels (233 ppi)

Table 5.2: Samsung Galaxy S GT-I9000

Component Model specification

CPU 1 GHz ARM Cortex A8

GPU 200 MHz PowerVR SGX 530

Memory 512 MB RAM

Display 3.7” 480x854 pixels (265 ppi)

Table 5.3: Motorola Milestone 2

Component Model specification

CPU 1 GHz ARM Cortex A5

GPU Adreno 200

Memory 512 MB RAM

Display 4.0” 480x854 pixels (245 ppi)

Table 5.4: Sony Xperia J

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 37

Component Model specification

CPU Quad-core 1.4 GHz ARM Cortex-A9

GPU Mali-400MP

Memory 1024 MB RAM

Display 4.8” 720x1280 pixels (306 ppi)

Table 5.5: Samsung Galaxy S III GT-I9300

5.2.2 Test applications

To evaluate the properties mentioned in the previous section, we built two
separate test applications: a native Android application and a web applica-
tion. The both applications implement similar functionalities and features,
although there are differences in the appearance and the underlying imple-
mentation. For instance, in the web application the native Android UI com-
ponents are replaced with corresponding HTML elements.

Both applications implement the following features:

• Displaying a world map

• Allowing the user to move around the map and zoom in and out

• Displaying the real-time location of the user on the map.

• Periodically calling a remote service to fetch and parse location data,
and displaying the data on map.

• Settings dialog, comprising of ability to change update interval and
filter the data that is fetched.

In practice, the applications implement a real-time tracking of trams in
Helsinki. The trams are shown as points on a interactive map, which the user
is able to move around and zoom in and out. The applications are making
periodical HTTP requests to a web service that returns the real-time data
in XML format. The data is provided by Helsinki Region Transport’s HSL
Live API [43] – although the applications receive the data through a custom
proxy. The applications also include a “settings”-view where the user can
define the update interval for the tracking and choose a line to track.

In the native application the maps are displayed using Google Maps An-
droid API. This is the standard and common way to implement a map view

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 38

on Android applications. On the other hand, in the web application the
map view is implemented using Leaflet2 which is a mobile-friendly, open-
source JavaScript library for displaying interactive maps. The reason for
these choices was that both are common and popular way to implement an
interactive map functionality for the corresponding platform. There are dif-
ferences in the low-level implementations, but in our test cases, the solutions
provide an equal functionality. The main language of the applications is
Finnish, since all of the participants in the user experience study were native
Finns.

Figure 5.1: Settings view of the na-
tive application.

Figure 5.2: Map view of the native
application.

To make the appearance and the functionality of the applications as sim-
ilar as possible, multi-touch zooming was disabled on the native application,
since the feature was not supported in the web application either. Instead,
zoom-in and zoom-out buttons were added to top left of the map area. Also,
the layouts of both applications were designed and implemented so that they
remind each other.

2http://leaflet.cloudmade.com

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 39

The web application is implemented using the common web technolo-
gies: HTML, CSS and JavaScript. Retrieving the location data from the
remote service was implemented with asynchronous HTTP requests. From
the features of HTML5, the web application utilizes Geolocation API for the
positioning and Web Storage API for saving the settings. Also, the Leaflet
map library utilizes several recent features of CSS3 and HTML5 such as an-
imated zoom, transitions and hardware accelerated graphics rendering [2].
However, all of these are not supported in Android version 2.3.

Figure 5.3: Settings view of the
web application.

Figure 5.4: Map view of the web
application.

The web application can be executed either as a pure web application
inside a browser, or as a hybrid application utilizing a web view component.
When executed as a hybrid application, the application typically utilizes
the platform’s default browser engine to run the application code. Hence,
in following tests, results for Android Browser can also be applied for the
corresponding hybrid application.

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 40

5.2.3 Automated use case

Since energy consumption and memory usage were measured by collecting
data on real-time while the test application was running on the device, it is
important that circumstances and use cases are similar during each test case.
To obtain reliable and comparable data, we had to make sure that during
every use case, same number of map tiles are downloaded and stored in the
memory, same amount of animations are displayed, graphics rendered and so
on.

Hence, we implemented a simple automated use case, in which the map
was controlled automatically through API of map view using pre-written
coordinates and zoom levels. This use case was repeated every time the
memory usage and energy consumption was measured. Same automated
use case was implemented in both web application and native application.
Running the automated use case takes about 40 seconds and it moves the
map view around Helsinki district, zooming in and out couple of times.

5.3 User Experience test

To measure the overall usability and the user experience of our web applica-
tion compared to the native one, we conducted a user experience study. The
idea was to let a group of volunteers experiment the web application and the
native application described in section 5.2.2. After the experimenting, the
participants filled a form where they were asked to grade the certain features
of the applications, including fluency, functionality and responsiveness.

5.3.1 Implementation

In the user experience test, two separate mobile devices were used. These
were Samsung Galaxy S and Google Nexus S. Both devices were running
Android 2.3 Gingerbread. To confirm the comparability of the devices, we
experimented at the beginning that the native application was running on
both devices equally fast without a notable difference in functionality, us-
ability or performance.

The native application was installed and run in Samsung Galaxy S,
whereas the web application was running on Google Nexus S. To make the
applications appear as identical as possible, the web application was compiled
to a hybrid application using PhoneGap and Android WebView.

In the test event, the participants were handed the devices with appli-
cations already running. They were instructed to test the both applications

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 41

for couple of minutes, experiment how they work and compare the applica-
tions to each other. After this, the participants were asked to evaluate the
following properties of the applications with a grade from 1 to 5.

1. Overall usability

2. Responsiveness

3. Speed and fluency

4. Overall functionality

The devices were marked with “A” (Google Nexus S running the web
application) and “B” (Samsung Galaxy S running the native application).
The participants evaluated the applications independently. However, in the
grading, they were instructed to pay attention to differences of the two ap-
plications. Participants were also asked, which one of the applications they
would prefer in their own device.

Totally 15 volunteers participated in the study. The average age of the
participants was 23 years and 73% of the participants were men. 66% of the
participants reported using a smartphone on a daily basis.

5.3.2 Results

The average grades for each property are presented in Figure 5.5.

Usability and
Fluency

Responsive-
ness

Stability and
speed

Overall
functionality

1

1.5

2

2.5

3

3.5

4

4.5

5

4.13

3.46

3.86

4.264.4
4.6 4.6 4.53

Web
application
Native
application

A
ve

ra
g

e
 g

ra
d

e
s

Figure 5.5: The results of the user experience study.

73% of the participants stated that application “B” (the native applica-
tion) was better than application “A” (the web application). 13% preferred

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 42

the web application whereas 13% could not find notable difference between
the applications.

5.3.3 Evaluation

The number of participants was relatively small, but the results are clear and
quite expected. The primary problems with the web application were the
slow responsiveness to the user interaction, and the fluency and the speed of
the user interface. In usability and overall functionality the web application
performed quite well. That is, the web application is usable and provides the
required functionality. However, the native application works more fluently
and provides a better user experience.

To provide more reliable information, the user experience study should be
organized using larger number of participants as well as several applications,
use cases and mobile platforms. Nevertheless, Android is the most popular
mobile platform, and Android 2.3 is still the most common Android version.
Moreover, our test applications cover typical features of the mobile applica-
tions: interactivity, 2D graphics and the common UI elements. Hence, we
suggest that figure 5.5 indicates how users experience the differences between
web applications and native mobile applications in general.

5.4 Performance measurement

Whereas the user experience study was conducted to evaluate the UI per-
formance, fluency and responsiveness, we also implemented a simple bench-
marking to evaluate the raw computing performance. This may not be very
relevant detail in an average mobile application, but illustrates the differences
in performance between the native code and JavaScript.

5.4.1 Implementation

For this study we did not use our test applications that were described in
section 5.2.2. Instead, we implemented a very simple application for bench-
marking the pure computing speed, both for the native Android platform and
the web. The application includes only a button that triggers an algorithm
which generates a set of random strings. These random strings are used for
MD5 hashing. After the function has finished, the application displays the
total time consumed for the calculations. Essentially, this study evaluates
the raw CPU speed and the implementation of virtual machine that executes
the code.

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 43

1 function create_random_string(len) {

2 var text = "";

3 var chars = "0123456789 abcdefghijklmnopqrstuvwxyz

4 ABCDEFGHIJKLMNOPQRSTUVWXYZ+_-.,<>’/*-";

5 for(var i=0; i < len; i++)

6 text += chars.charAt(Math.floor(Math.random () * chars.

length));

7 return text;

8 }

9

10 function benchmark () {

11 d = new Date();

12 n = d.getTime ();

13 for(i = 0; i <10000; i++) {

14 hash = md5(create_random_string (12),null ,1);

15 }

16 d = new Date();

17 m = d.getTime ();

18 alert("time: " + (m-n));

19 }

Listing 5.1: The web implementation of the CPU benchmarking application
in JavaScript

The benchmark-function of the web application generates 10 000 random
strings with length of 12 characters. For each of them, a MD5 hash is cal-
culated. After this, the total time of the process is displayed in millisec-
onds. Naturally, the web application also includes a button that invokes
the benchmark-function. Since JavaScript does not include a native MD5-
implementation, a freely available open-source implementation was used3.

The relevant part of the code of the native test environment is presented
in Listing 4.2.

1 btn.setOnClickListener(new View.OnClickListener () {

2 public void onClick(View v) {

3 long start = System.currentTimeMillis ();

4 String rnd = null;

5 for(int i = 0; i <10000; i++) {

6 rnd = createRandomString (12);

7 byte[] bytesOfMessage = uuid.getBytes ();

8 try {

9 MessageDigest md = MessageDigest.getInstance("

MD5");

3http://pajhome.org.uk/crypt/md5/

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 44

10 byte[] digest = md.digest(bytesOfMessage);

11 } catch(NoSuchAlgorithmException e) { }

12 }

13 long end = System.currentTimeMillis ();

14 Toast.makeText(ctx , "Time: " + (end -start), Toast.

LENGTH_SHORT).show();

15 }

16 });

Listing 5.2: The native implementation of CPU benchmarking application in
Java

The practical implementation of the measurement was quite straightfor-
ward. The test was executed ten times on each platform and the execution
times were written down.

The benchmark tests were run in all of our four test devices. We evaluated
both the native code and JavaScript code running in web browser. In order
to obtain comprehensive results, the web benchmark was run on the following
browsers: Chrome Mobile 18, Firefox Mobile 17, Opera Mobile 12 and the
default Android Browser. Chrome is available only for Android 4.0 and later.

Also, to obtain supportive results we also ran SunSpider benchmark for
each web browser on every device. SunSpider is a JavaScript benchmarking
tool which measures the performance of JavaScript engines – not the browser
APIs or operating with DOM [36]. The purpose of this test was to confirm
that our MD5-hashing test is valid and correlates with another benchmark.
SunSpider is actually much more comprehensive web browser benchmarking
tool than our simple script, but the main focus of this test was to execute
same algorithm both in native code and as a web application.

5.4.2 Results

The results are presented as bar charts below. Each chart covers one device.
As excepted, in average the native application was faster than web applica-
tions. However, there seems to be major differences between the browsers.
While on Android 2.3 devices the default browser is the slowest by far, Fire-
fox is even faster than the native application. On the other hand, on newer
Android devices the native application outperforms all web browsers. Sun-
Spider results seem to correlate relatively well with MD5-hashing results.
Naturally, since we observe the execution times of a certain task, the lower
is better.

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 45

Native app Android
Browser

Firefox Opera
0

1000

2000

3000

4000

5000

6000

7000

1732

4149

1483
1734

6149

2987

3804

MD5
hashing

SunSpider
0.9.1

E
xe

cu
tio

n
 t

im
e

,
m

ill
is

e
co

n
d

s

Figure 5.6: Performance test results: Samsung Galaxy S, Android 2.3.3

Native app Android
Browser

Firefox Opera
0

1000

2000

3000

4000

5000

6000

7000

8000

1774

4907

1454

1982

6694

3204
3524

MD5
hashing

SunSpider
0.9.1

E
xe

cu
tio

n
 t

im
e

,
m

ill
is

e
co

n
d

s

Figure 5.7: Performance test results: Motorola Milestone 2, Android 2.3.4

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 46

Native
app

Android
Browser

Firefox Opera Chrome
0

500

1000

1500

2000

2500

3000

3500

4000

830

2172

1469

1956 2038

0

3173

2788

3392

3113

MD5
hashing

SunSpider
0.9.1

E
xe

cu
tio

n
 t

im
e

,
m

ill
is

e
co

n
d

s

Figure 5.8: Performance test results: Sony Xperia J, Android 4.0.4

Native
app

Anrdoid
Browser

Firefox Opera Chrome
0

200

400

600

800

1000

1200

1400

1600

472

821
743

853

972

0

1180

1382 1352
1270

MD5
hashing

SunSpider
0.9.1

E
xe

cu
tio

n
 t

im
e

,
m

ill
is

e
co

n
d

s

Figure 5.9: Performance test results: Samsung Galaxy S III, Android 4.1.1

5.4.3 Evaluation

Essentially, this study measures the performance of JavaScript engines com-
pared to performance of DalvikVM and native Android applications. The re-
sults were quite much expected: interpreting JavaScript code has been much

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 47

slower than running native code, but lately the performance of the JavaScript
engines have been improved significantly. On the late Android versions, the
default browser has closed the gap to other web browsers. The results of
both MD5-hashing and SunSpider benchmark support this assumption, and
they also correlate relatively well.

However, running an application inside Android’s DalvikVM does not
provide optimal performance either. For obtaining the best possible perfor-
mance for a device running Android, applications should be written in pure
C, compiled to binary code and executed directly under the Linux kernel [18].

It is worth noticing that the implementations of MD5 hashing algorithm
may not be identical on the web application and the native Android ap-
plication. However, we assume that MessageDigest class of Android SDK,
provided by package java.security which was used on the native application,
is well implemented and optimized as it is part of Android APIs. Hence, we
assume that the native implementation is not at least considerably worse
than the web implementation.

5.5 Memory usage

In this section we compare the memory footprint of a native Android appli-
cation and corresponding web application. In this part of the study we use
the test applications described in section 5.2.2.

5.5.1 Implementation

At first, it is important to notice that every Android process has two different
memory heaps: native heap and VM heap. In practice, the difference is that
native heap is allocated using C’s malloc() function, whereas VM heap is
handled by Dalvik VM and allocated with Java’s new keywords.

Moreover, every application has so called “shared memory” and “private
dirty” memory. Parts of the memory is shared across the running applica-
tions. In practice, this area of memory may include common classes and
routines that every application needs for running, but that are usually not
written or modified. On the other hand, “private dirty” is the amount of
memory that can not be paged to disk and that is not shared with any other
process. In practice, “private dirty” is the amount of memory that will be
freed once the application is terminated4. From our point of view, “private
dirty” is the relevant value.

4http://stackoverflow.com/a/2299813

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 48

For tracking the memory usage, we used our test devices, applications and
Android SDK tools. Each mobile device was attached to a computer that
was reading the memory information with command “adb shell dumpsys pid”
where “pid” is id of the process. Before the study, the devices were rebooted
to make sure that the memory was cleared and all the user-land applications
were terminated. After this, the application to be monitored was launched
and the memory tracking was started. Automated use case was run for each
application, and snapshots of memory usage were taken every three seconds
with a following command line script (Bash):

1 for i in {1..15} ; do adb shell dumpsys meminfo PID >>

FILE_TO_BE_WRITTEN; sleep 3 ; done

The same test was organized separately on both for the native application,
and the web application running on multiple web browsers. Since the web
application is always executed inside a web browser, we measured the memory
footprints of browser processes.

5.5.2 Results

The results for each device are illustrated in the tables below. Graphs illus-
trate the total size of “private dirty” memory of each process. The memory
usage was monitored since the application was started until the automated
test case was finished. Total length of each test case was 42 seconds. During
each test case, 15 memory snapshots were taken.

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 49

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0

10

20

30

40

50

60

70

80

90

100

Opera

Firefox

Android Native

Android browser

Time, seconds

T
o

ta
l h

e
a

p
 s

iz
e

, m
e

g
a

b
yt

e
s

(M
B

)

Figure 5.10: Memory usage: Samsung Galaxy S, Android 2.3.3

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0

20

40

60

80

100

120

Opera

Firefox

Android native

Android browser

Time, seconds

T
o

ta
l h

e
a

p
 s

iz
e

, m
e

g
a

b
yt

e
s

(M
B

)

Figure 5.11: Memory usage: Motorola Milestone 2, Android 2.3.4

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 50

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0

10

20

30

40

50

60

70

80

90

Opera

Chrome

Firefox

Android native

Android browser

Time, seconds

M
e

m
o

ry
 u

sa
g

e
, m

e
g

a
b

yt
e

s
(M

B
)

Figure 5.12: Memory usage: Sony Xperia J, Android 4.0.4

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0

10

20

30

40

50

60

70

80

90

100

Opera

Chrome

Firefox

Android native

Android browser

Time, seconds

M
e

m
o

ry
 u

sa
g

e
, m

e
g

a
b

y t
e

s
(M

B
)

Figure 5.13: Memory usage: Samsung Galaxy S III, Android 4.1.1

5.5.3 Evaluation

It is easy to notice that on every device and every platform, the average
memory usage of the native application is lower than any browser. However,

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 51

we need to remember that we are comparing the memory footprint of the
native application to memory footprint of web browsers – not only the web
application.

Current browsers are complicated and heavy systems that may require
tens of megabytes memory for just loading and starting. Hence, we can not
draw a conclusion that web applications consume much more memory than
native application. Actually, it seems that the higher is memory footprint in
the applications, the lower is the difference between the native application
and web browsers. Only exception is Firefox, which has almost twice larger
memory footprint than rest of the browsers.

Overall, we need to take into account that we measured the memory
consumption using only a one type of application. It seems that loading
and processing hundreds of bitmap tiles actually requires quite large amount
of memory. Thus, web browsers and Dalvik VM may act in a completely
different way when running a different kind of applications.

5.6 Energy consumption

Since battery life is an important factor on mobile devices, we arranged a
study to evaluate and compare the energy consumption on web and native
applications.

5.6.1 Implementation

The energy consumption was measured using a specific power monitor by
Monsoon Solutions Inc. [28] The power monitor was connected to the termi-
nals of the device battery, labeled as positive (+) and negative (-) by copper
tape and the DC leads.

After this, the power monitor was connected to a computer and turned
on. The power consumption of the device was measured using Power Tool
by Monsoon Solutions Inc. Once the hardware setup was ready, we started
to record the power usage and ran several test cases on the mobile device.
In these test cases we used our test applications described in section 5.2.2.
Hence, the test application displayed an interactive map with overlay data
that was periodically updated over a network connection.

During the power measurements, the test applications were run separately
in the following environments:

• Motorola Milestone 2 and Samsung Galaxy S (Android 2.3): native
application, Android default browser, Opera Mobile 12, Firefox Mobile
16

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 52

Figure 5.14: Power monitor connected to Samsung Galaxy S battery.

• Sony Xperia J (Android 4.0) and Samsung Galaxy S III (Android 4.1):
native application, Android default browser, Chrome Mobile 18, Opera
Mobile 12, Firefox Mobile 17

On each environment, the power usage of applications was measured both
in idle state and during the automated use case described in section 5.2.3.
The duration of the measurements were between 20 (idle) and 45 seconds
(running). Each test case was run at least twice to verify the reliability of
the results.

The devices were connected to network via WiFi and cellular network
(UMTS). Since the type of network connection significantly affects the power
consumption, the results are presented and analyzed separately. When WiFi
connection was used, cellular network was disabled and vice versa.

The applications utilized GPS for positioning. Automatic screen bright-
ness adjustment was disabled, as well as other power saving-saving features.
In the each test case, the update interval of the data obtained from a remote
service, was set to 10 seconds. To provide an equal starting point for each
test case, the mobile device was rebooted before every power measurement.

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 53

5.6.2 Results

Average results, with usage and idle state combined, are presented as bar
charts in the figures 5.15 and 5.16.

Exact results are presented in numerical form in the tables 5.6, 5.7, 5.9
and 5.8. The graphs of raw measurement data can be found in the appendix
list of this thesis.

Galaxy S Milestone 2 Xperia J Galaxy S3
600

800

1000

1200

1400

1600

1800

Native

Android
Browser

Firefox

Opera

Chrome

A
ve

ra
g

e
 p

ow
e

r
u

sa
g

e
,

m
W

Figure 5.15: Differences of power usage across the different environments
using WiFi as Internet connection.

Galaxy S Milestone 2 Xperia J Galaxy S3
600
800

1000
1200
1400
1600
1800
2000
2200
2400

Native

Android
Browser

Firefox

Opera

Chrome

A
ve

ra
g

e
 p

ow
e

r
u

sa
g

e
,

m
W

Figure 5.16: Differences of power usage across the different environments
using cellular network as Internet connection.

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 54

Environment Network Idle Running Average

Native application
WiFi 1151mW 2076mW 1613mW

3G 1485mW 2751mW 2118mW

Android Browser
WiFi 1119mW 1611mW 1365mW

3G 1032mW 2059mW 1545mW

Firefox
WiFi 1258mW 2040mW 1649mW

3G 1661mW 2541mW 2101mW

Opera
WiFi 1512mW 1766mW 1639mW

3G 1914mW 2315mW 2114mW

Table 5.6: The results of the power measurement test on Samsung Galaxy
S, Android 2.3.3

Environment Network Idle Running Average

Native application
WiFi 716mW 1573mW 1144mW

3G 1592mW 2648mW 2120mW

Android Browser
WiFi 840mW 1376mW 1108mW

3G 1269mW 2229mW 1749mW

Firefox
WiFi 834mW 1584mW 1209mW

3G 1626mW 2575mW 2101mW

Opera
WiFi 913mW 1481mW 1197mW

3G 2018mW 2375mW 2196mW

Table 5.7: The results of the power measurement test on Motorola Milestone
2, Android 2.3.4

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 55

Environment Network Idle Running Average

Native application
WiFi 848mW 1267mW 1057mW

3G 1195mW 1575mW 1385mW

Android Browser
WiFi 836mW 1375mW 1105mW

3G 1070mW 1628mW 1349mW

Firefox
WiFi 861mW 1308mW 1084mW

3G 1261mW 1640mW 1450mW

Opera
WiFi 1138mW 1407mW 1272mW

3G 1273mW 1632mW 1452mW

Chrome
WiFi 867mW 1424mW 1145mW

3G 1143mW 1749mW 1446mW

Table 5.8: The results of the power measurement test on Sony Xperia J,
Android 4.0.4

Environment Network Idle Running Average

Native application
WiFi 1103mW 1575mW 1339mW

3G 1552mW 2169mW 1860mW

Android Browser
WiFi 1110mW 1573mW 1341mW

3G 1551mW 1992mW 1771mW

Firefox
WiFi 1139mW 1795mW 1467mW

3G 1636mW 2698mW 2167mW

Opera
WiFi 1324mW 2112mW 1718mW

3G 1657mW 2485mW 2071mW

Chrome
WiFi 1096mW 2083mW 1589mW

3G 1515mW 2841mW 2178mW

Table 5.9: The results of the power measurement test on Samsung Galaxy S
III, Android 4.1.1

CHAPTER 5. WEB VS. NATIVE - EXPERIMENTAL TESTING 56

5.6.3 Evaluation

We assume that the results correlate quite well with the reality. Results
across the different platforms and devices support each other. Also, the
results were obtained using both cellular network and WiFi. However, as well
as on our other test cases, the main problem is that we evaluate only a one
type of mobile application. Thus, we can not draw too hasty generalizations.

However, the overall trend is rather clear. On Android 2.3 the default
browser seems to be clearly the most energy-efficient platform for running
mobile applications. On newer devices and Android versions the advantage
of Android Browsers seems to be much lower. However, on average it still
performs better than any other browsers and does not lose for the Dalvik
VM either.

Again, we need to take into account the differences between the native
application and the web application. The implementations are not exactly
identical. They use different libraries and mechanisms for displaying the
maps and controlling the user interface. Also, the map tiles are served from
different servers. The native application downloads the tiles from Google’s
map service, whereas the web application uses CloudMade5 tile servers. This
may cause differences in latency and average file sizes, which in turn, may
influence the network usage and the energy consumption.

5http://cloudmade.com/

Chapter 6

Discussion and Analysis

This chapter briefly sums up and evaluates the results and findings of the
thesis. Also, the advantages and the disadvantages of the web and the native
technologies are evaluated and compared to each other.

6.1 Sum up and analysis of results

At first, it is important to notice that our study covers only Android platform
– no other common mobile platforms, such as iOS or Windows Phone at
all. Thus, there may be differences across the platforms and the devices.
However, since Android is the most popular mobile platform, we suggest
that the results are relevant and correlate with the overall trend. Hence, we
propose that in general the following findings are true.

• The native technologies provide better user experience. That is, na-
tive applications work faster and more fluently, resulting in better user
interaction and responsiveness.

• Energy consumption on web applications depends on the browser en-
vironment the application is executed. In case of Android, it seems
that web applications running on Android default browser provides the
lowest power consumption on average. However, difference to native
environment is rather small.

• The total memory usage in web applications is usually higher than in
native applications, since the whole web browser need to be started
to run web applications. However, once the web browser is started,
running web applications does not increase the total memory footprint
that much. Thus, if the web browser is running anyway, it may be

57

CHAPTER 6. DISCUSSION AND ANALYSIS 58

even more memory-efficient to run web application instead of native
application.

• The native technologies provide a higher computing performance. This
is natural, since JavaScript is a dynamic and weakly-typed language,
and native code is usually compiled and and optimized for the corre-
sponding platform.

6.1.1 User Experience

The user experience study indicates the flaws of web applications in practice.
As noticed by many users and bloggers [16, 22], native applications tend
to work smoother and faster than web applications. This is natural and
logic, and opposite result would have been a surprise. Although the native
application performed clearly better than the web application in the user
experience test, the difference was relatively small. As expected, the native
application took advantage over the web application in responsiveness, speed
and fluency.

While the web application performed relatively well in user experience
test, the test applications did not include many technically demanding or
computationally heavy features. Thus, the advantage for native technologies
could be much more significant for different kind of applications. Hence, we
conclude that with careful implementation certain type of web applications
may provide sufficient user experience and performance. However, developers
need to pay attention especially in responsiveness and fluency of the user
interface.

6.1.2 Performance

In contrast to the user experience test, results of the performance measure-
ments are much more complicated. While the performance of Android 2.3
default browser is very poor compared to any other browser or platform, the
late web browsers Opera 12 and Firefox 17 are able to match to the per-
formance of the native benchmark on Android 2.3. On the other hand, on
Android 4.0 and Android 4.1 platforms, the native benchmark clearly out-
performs all the web browsers. Also, on the newer Android versions, the
default browser has caught up the other web browsers. Hence, during the
last two years the performance of JavaScript engines has improved, but so is
the performance of Android’s Dalvik VM.

This can be easily seen when comparing Galaxy S (Android 2.3) and
Xperia J (Android 4.0) to each other. Samsung Galaxy S includes 1GHz

CHAPTER 6. DISCUSSION AND ANALYSIS 59

Cortex A8 processor, while Xperia J includes 1GHz Cortex A5. Processor of
Galaxy S should be slightly faster, but according to the benchmark results
on Firefox and Opera, the devices are quite close to each other. However,
in the native benchmark Xperia J is even twice as fast as Galaxy S. This
implicates, that performance of Dalvik VM has improved a lot.

From our test devices, Samsung Galaxy S III is in its own class. Galaxy
S III includes a 1.4GHz quad-core processor and even the performance of
web benchmark matches to performance of native benchmark on any other
device. However, it does not utilizes all the cores during the benchmark.
When monitoring CPU usage, it executes all the tests using just a single
core. Nevertheless, it is still two times faster than any other device. Also,
Galaxy S III runs Android 4.1, which may affect to the difference.

One interesting detail is the success of Firefox, which was clearly the
fastest browser in our MD5-hashing test. According to SunSpider, which
evaluates many different properties of the JavaScript engine, in cryptographic
operations Firefox is not any faster than other browsers. However, SunSpider
results show that the only part where Firefox dominates is string processing.
In our MD5-hashing test, every browser generates 10,000 of random strings
with length of 12 characters. Since Firefox was very fast in string processing,
this must be the part where it makes the difference to other browsers.

6.1.3 Memory usage

As explained in the section 5.5.1, memory management of Android is quite
complicated and monitoring the amount of memory consumed by an appli-
cation is not straightforward. Every application has two different memory
heaps - a native heap and a Dalvik heap - as well as private memory and
shared memory separately. We monitored the size of “private dirty” memory
which essentially represents the amount of memory that will be freed, once
the application is terminated.

Also, when evaluating amount of memory consumed by the web appli-
cation, we needed to monitor memory usage of the browsers, since the web
application is run inside a web browser. When a web browser is started,
a lot of data is loaded to memory, including browser plugins and runtime
environment. Thus, it is natural that initially the web application allocates
a large amount of memory.

Generally, the results show that starting the native application consumes
much less memory than starting a web browser and navigating to the web
application. However, once the automated use case is being executed, mem-
ory usage of the native application is increasing more rapidly than memory
usage of the web application. On Samsung Galaxy S III, three of the four

CHAPTER 6. DISCUSSION AND ANALYSIS 60

web browsers resulted in lower memory footprint than the native application.
On the other devices, the native application resulted in the lowest power con-
sumption, but the difference to web browsers was relatively small at the end.
Firefox is a special case: it produced almost a twice larger memory footprint
that the other browsers of the native application.

It seems that while the web application needs more resources to be loaded
and started, the native application consumes more memory when application
is being used. One possible reason for this might be garbage collection. For
the native application, garbage collection is implemented in Dalvik VM. On
the other hand, on the web application garbage collection is implemented
both in JavaScript and lower level, such as Dalvik VM or native code. This
may restrict the memory usage of the application during the execution.

For sure, running a lightweight native application results in a much lower
memory consumption than opening a heavy web browser and running a web
application. However, if the web browser is running anyway on background,
opening a web application may increase the total memory usage of the system
less than opening a native application.

6.1.4 Power consumption

In the power consumption test we measured the total power usage of each
device on idle state and during the automated test case, while both WiFi
and cellular network were separately used as Internet connection.

A bit surprisingly, the default browser of Android performed the best on
average. On the devices running Android 2.3, Android Browser was almost
dominant, while on Xperia J and Galaxy S III the difference to the native
application was very small. However, no other browsers were more energy-
efficient than the native application.

There are a few of factors that can explain the differences in power con-
sumption across browsers and platforms: CPU / GPU usage and network
usage. Of course, different devices have different CPUs, screen sizes and
other hardware, but we can omit these, since we focus on the differences
between the web application and the native application – not the differences
between the devices.

For instance, the default browser of Android 2.3 does not support GPU
acceleration for graphics rendering. Thus, it does not utilize GPU at all, while
the native application does. This may partially explain the success of Android
Browser on the older Android platform. Another essential factor is CPU
usage. During the automated test case, the Android 2.3 native application
and Firefox utilized around 60–80% of CPU whereas Android Browser and
Opera kept the CPU utilization around 30%.

CHAPTER 6. DISCUSSION AND ANALYSIS 61

On the newer platforms, Android 4.0 and Android 4.1, the native appli-
cation and every browser supported GPU acceleration for CSS transforms.
Also, the results between the browsers and the native applications are fairly
even compared to Android 2.3. The only test case where the native appli-
cation performed better than than the web application on Android Browser,
was Xperia J using WiFi as Internet connection. On the other hand, when
the device was connected to Internet via cellular network, Android Browser
was the most energy-efficient platform also on Xperia J. On average, once
the WiFi connection was switched to UMTS network, the power consump-
tion of the native application increased higher percentage than the power
consumption of the web application.

This is interesting, since a network monitor showed that the web applica-
tion actually downloaded more data from network for during the automated
test. There are minor differences between the devices – mainly because of
different screen sizes and resolutions – but generally, the applications require
between 3 to 4 megabytes (MB) of data during the 40 second test case. How-
ever, it seems that the web application downloads 10-20% more data than
the native application – even though we exclude the data the web application
needs to download during the startup.

However, when we compare the two map servers – Google’s map server
and CloudMade tile server that the web application uses – it seems that
latency to CloudMade server is significantly lower. While 56 byte ICMP ping
(round-trip time) to Google’s map server is almost 40 milliseconds, round-
trip time to CloudMade tile server is only 10-15 milliseconds. Hence, the
native application needs to wait each response from the map service much
longer than the web application. Thus, the native application requires the
device to keep network connection active longer time.

6.2 Pros and Cons

In this section we evaluate the advantages and disadvantages of the different
technologies and solutions in mobile application development. Table 6.1 il-
lustrates the differences between the web and the native technologies. It also
shows how the hybrid solutions compare to other technologies. The table
illustrates that the advantages of the each technology depends heavily on the
usage purpose of the application.

In the Table 6.1 the gray cells refer to a disadvantage, whereas the white
cells refer to an advantage. The center cells indicate how the hybrid solutions
compare to the web and the native solutions. There are couple of features
in web applications which may be considered both as an advantage and a

CHAPTER 6. DISCUSSION AND ANALYSIS 62

Web technologies Hybrid Native technologies

Limited performance Optimal performance

Lower user experience Optimal user experience

Functionality limited to the fea-
tures that are supported by web
browsers and HTML5

Full access to device APIs and
sensors

No deployment via application
markets, need for custom mone-
tizing strategies.

Easy monetizing and distribution
via application markets.

Applications available online,
network connection required

Applications available for offline
use

Lower development costs Higher development costs

Rapid development using the
common web technologies

Platform specific development
tools

Immediate world wide distribu-
tion over the web

Platform specific packaging and
distribution

Applications can be distributed
across all platforms with small or
no modifications

Applications must be imple-
mented separately for every plat-
form

Applications always up-to-date
and available as web services

Applications must be installed
and updated manually for every
device

Table 6.1: Strenghts and weaknesses of each application development tech-
nology.

disadvantage depending on the context. For instance, the fact that web ap-
plications are available as web services is an advantage, since the users do not
need to manually download and install a certain application, and the appli-
cation is available whenever needed on any device. On the other hand, this
may also restrict the usage of the application, since the network connection
is required. The application may be unavailable in extreme conditions when
network connection is not available. Also, a temporary break in the network
connections may bring the application down.

In the following subsections we analyze the advantages and disadvan-

CHAPTER 6. DISCUSSION AND ANALYSIS 63

tages of each technology in more detail. Also, we evaluate, which technology
provides the optimal solution in different use cases. Commonly, there is
no correct answers, since every application has its own functional and non-
functional requirements.

6.2.1 Native technologies

In the most platforms, native technologies are common and official way to
produce applications. The mobile platform vendors, such as Apple, Google
and Microsoft, recommend that the native technologies are used for mobile
application development. As our results show, the native technologies provide
the best performance, user experience and usability. In addition, the users
are used to download and install the native applications from application
markets. Hence, the application markets are the best way to advertise and
distribute applications.

The problems with the native technologies are the fragmentation and in-
compatibility of the mobile platforms. Because applications must be imple-
mented separately for every platforms, this may result in high development
costs and limited coverage of mobile platforms.

However, the native technologies have several strengths. The native tech-
nologies are the best choice for the projects that require high performance,
optimal user experience or hardware accelerated graphics. Moreover, if an
application is meant to be available only for a certain platform, the native
technologies provide the best result.

6.2.2 Web technologies

The main advantage of the web technologies is their compatibility across
the platforms. Basically, web applications can be run on any platform that
includes a modern web browser. This results in fast development and de-
ployment of the applications practically on any platform.

However, web applications are limited both in the usability and the func-
tionality. For instance, many web browsers are not able to handle the ad-
vanced functionalities, such as 3D-graphics, or provide access to certain de-
vice sensors. Web applications are used primarily as online services, which
may be either an advantage or a disadvantage depending on the use case.
Web applications can not be advertised or monetized via application mar-
kets. However, web applications are available anywhere and any time via
network connections.

We recommend the web technologies to be used for applications that
require high portability and fast online deployment. Web applications can

CHAPTER 6. DISCUSSION AND ANALYSIS 64

also be used for viewing basic 2D-graphics and providing interactivity, as
our test application shows. However, for high performance and optimal user
experience, the alternative technologies should be considered.

6.2.3 Hybrid solutions

Hybrid solutions are somewhere between web and native. That is, hybrid
applications may include parts or components implemented using the native
technologies, whereas the main application may still be written using the
web technologies. This approach is useful, when an application requires
functionalities that are not available by using pure web technologies. A
significant amount of the application code can still be recycled and utilized
on multiple platforms, which reduces the amount of the work.

The hybrid approach can also be used for packaging a web application
for a certain platform and distributing it through official channels, such as
Apple’s App Store. Nevertheless, the hybrid solutions always draw some
kind of trade-off. For instance, native components of a hybrid application
must be implemented separately for each platform. Hence, the more native
components are used, the higher is the effort needed for the cross-platform
deployment. Moreover, the performance and the usability of hybrid applica-
tions are still dependent on the capabilities of the web browser.

Chapter 7

Conclusions

It is clear, that the best technology for implementing a certain application
depends on several factors: objectives, business model, target audience, tech-
nical requirements [29], non-functional requirements and budget. Overall,
based on our studies and the other findings, we propose that the main ad-
vantages provided by the web technologies are fast development and deploy-
ment of the application, and compatibility across the platforms. On the
other hand, the native technologies provide optimal performance, which in
turn results in better user experience and interactivity. There are also minor
differences between the web and the native technologies in the resource con-
sumption, but their importance is rather minimal when it comes to business
or user experience.

To obtain more comprehensive results, the experimental research should
be extended to cover several platforms and different types of applications.
However, the research results of this thesis cover the most common mobile
platform and several different devices. Thus, the results are relevant and
provide us a good indication on how web technologies compare to native
technologies in average mobile application.

A potential success factor for mobile web applications might be the up-
coming features of HTML5 that are not yet widely deployed, such as WebGL
and WebRTC. However, their suitability and performance on mobile is still
unclear. Overall, we suggest that once the performance and the technical
capabilities of the web technologies are close to the native technologies, the
web technologies provide a very useful set of tools for replacing the native
technologies almost in any use case.

While evaluating the future of mobile applications and their evolution,
there are several alternative paths. Either the web or the native technolo-
gies may dominate the markets, or they will be used along with each other
depending on the situation. Also, hybrid applications have several strengths

65

CHAPTER 7. CONCLUSIONS 66

and they might become an important player in the mobile application field.
We suggest that the future of the web technologies in mobile application

development looks promising. The web technologies already provide a vi-
able alternative for the native technologies. Moreover, we expect that the
breakthrough of the advanced web technologies, such as HTML5, will emerge
the adaption of the web technologies. However, we do not believe that the
native applications will disappear from the market. Since the large compa-
nies, including Apple, Google and Nokia, are rapidly building the ecosystems
around their products, the native APIs and the platform specific features will
become increasingly important to differentiate from the others. In addition,
the users are used to find and download their applications from the platform
specific application markets hosted by the companies. Hence, we expect that
the usage of the web technologies will increase in the near future, but they
will not completely supersede the native technologies.

The main challenge of web technologies is user experience. While web
technologies may provide sufficient functionality and meet the technical re-
quirements of most mobile applications, they are still struggling with slow
and lagging user interfaces. This is a problem especially in mobile field, where
users expect nice and smooth interaction and immediate response. Moreover,
platform vendors may not be willing to address this problem, since they want
to keep their SDKs and APIs as primary software development technology.

Bibliography

[1] Shruthi Adappa, Vikas Agarwal, Sunil Goyal, Ponnurangam Ku-
maraguru, and Sumit Mittal. User controllable security and privacy
for mobile mashups. In Proceedings of the 12th Workshop on Mobile
Computing Systems and Applications, HotMobile ’11, pages 35–40, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0649-2. doi: 10.1145/
2184489.2184498. URL http://doi.acm.org/10.1145/2184489.2184498.

[2] Vladimir Agafonkin and CloudMade team. Leaflet Featuers. URL
http://leaflet.cloudmade.com/features.html. [Online; received 3 Oct
2012].

[3] Android Open Source Project. Philosophy and Goals. URL http://

source.android.com/about/philosophy.html. [Online; received 8 Sep
2012].

[4] Mohsen Anvaari and Slinger Jansen. Evaluating architectural openness
in mobile software platforms. In Proceedings of the Fourth European
Conference on Software Architecture: Companion Volume, ECSA ’10,
pages 85–92, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0179-
4. doi: 10.1145/1842752.1842775. URL http://doi.acm.org/10.1145/

1842752.1842775.

[5] Apple. About the iOS Technologies. URL http://developer.

apple.com/library/ios/#Documentation/Miscellaneous/Conceptual/

iPhoneOSTechOverview/Introduction/Introduction.html. [Online;
received 30 Sep 2012].

[6] Andre Charland and Brian Leroux. Mobile application development:
web vs. native. Commun. ACM, 54(5):49–53, May 2011. ISSN 0001-
0782. doi: 10.1145/1941487.1941504. URL http://doi.acm.org/10.

1145/1941487.1941504.

67

http://doi.acm.org/10.1145/2184489.2184498
http://leaflet.cloudmade.com/features.html
http://source.android.com/about/philosophy.html
http://source.android.com/about/philosophy.html
http://doi.acm.org/10.1145/1842752.1842775
http://doi.acm.org/10.1145/1842752.1842775
http://developer.apple.com/library/ios/#Documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#Documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#Documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://doi.acm.org/10.1145/1941487.1941504
http://doi.acm.org/10.1145/1941487.1941504

BIBLIOGRAPHY 68

[7] Mark Doernhoefer. JavaScript. SIGSOFT Softw. Eng. Notes, 31(4):
16–24, July 2006. ISSN 0163-5948. doi: 10.1145/1142958.1142972. URL
http://doi.acm.org/10.1145/1142958.1142972.

[8] F-Secure. Mobile Threat Report, Q2 2012.

[9] N. Gandhewar and R. Sheikh. Google Android: An emerging software
platform for mobile devices. International Journal on Computer Science
and Engineering(IJCSE), pages 12–17, 2010.

[10] Jesse James Garrett. Ajax: A new approach to web ap-
plications, 2005. URL http://www.adaptivepath.com/ideas/

ajax-new-approach-web-applications.

[11] Gartner Inc. Market Share: Mobile Devices, Worldwide, 2Q12. Gartner
Research Report, 2012. URL http://www.gartner.com/it/page.jsp?id=

2120015.

[12] M.H. Goadrich and M.P. Rogers. Smart smartphone development: iOS
versus Android. In Proceedings of the 42nd ACM technical symposium
on Computer science education, pages 607–612. ACM, 2011.

[13] Hewlett-Packard New release. HP to Contribute webOS to Open Source.
URL http://www.hp.com/hpinfo/newsroom/press/2011/111209xa.html.
[Online; received 18 Sep 2012].

[14] Internet Engineering Task Force (IETF). HTTP State Management
Mechanism, RFC 2965, . URL http://www.ietf.org/rfc/rfc2965.txt.

[15] Internet Engineering Task Force (IETF). The WebSocket Protocol, RFC
6455, . URL http://tools.ietf.org/html/rfc6455.

[16] Adrian Jones. Native, Hybrid or Web Apps? URL http://buildmobile.

com/native-hybrid-or-web-apps/. [Online; received 28 Nov 2012].

[17] Khronos Group. WebGL - OpenGL ES 2.0 for the Web. URL http:

//www.khronos.org/webgl/. [Online; received 1 Oct 2012].

[18] Sangchul Lee and Jae Wook Jeon. Evaluating performance of Android
platform using native C for embedded systems. In Control Automation
and Systems (ICCAS), 2010 International Conference on, pages 1160
–1163, oct. 2010.

http://doi.acm.org/10.1145/1142958.1142972
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.gartner.com/it/page.jsp?id=2120015
http://www.gartner.com/it/page.jsp?id=2120015
http://www.hp.com/hpinfo/newsroom/press/2011/111209xa.html
http://www.ietf.org/rfc/rfc2965.txt
http://tools.ietf.org/html/rfc6455
http://buildmobile.com/native-hybrid-or-web-apps/
http://buildmobile.com/native-hybrid-or-web-apps/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/

BIBLIOGRAPHY 69

[19] Zhijie Lin, Jiyi Wu, Qifei Zhang, and Hong Zhou. Research on Web Ap-
plications Using Ajax New Technologies. In MultiMedia and Information
Technology, 2008. MMIT ’08. International Conference on, pages 139
–142, dec. 2008. doi: 10.1109/MMIT.2008.107.

[20] Peter Lubbers and Frank Greco. HTML5 Web Sockets: A Quantum
Leap in Scalability for the Web. http://www.websocket.org/quantum.

html. [Online; received 25 Sep 2012].

[21] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. Attacks
on WebView in the Android system. In Proceedings of the 27th Annual
Computer Securityleaflet html5 canvas Applications Conference, ACSAC
’11, pages 343–352, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0672-0. doi: 10.1145/2076732.2076781. URL http://doi.acm.org/10.

1145/2076732.2076781.

[22] Michael Mahemoff. HTML5 vs Native: The mobile app debate.
URL http://www.html5rocks.com/en/mobile/nativedebate/. [Online;
received 28 Nov 2012].

[23] Ryan Matzner. Why Web Apps Will Crush Native Apps. URL http:

//mashable.com/2012/09/12/web-vs-native-apps/. [Online; received 28
Nov 2012].

[24] Microsoft Developer Network. HTML and DHTML Reference. URL
http://msdn.microsoft.com/en-us/library/ms533050.aspx. [Online;
received 4 Sep 2012].

[25] T. Mikkonen and A. Taivalsaari. Reports of the Web’s Death Are
Greatly Exaggerated. Computer, 44(5):30 –36, may 2011. ISSN 0018-
9162. doi: 10.1109/MC.2011.127.

[26] T. Mikkonen and A. Taivalsaari. Apps vs. Open Web: The Battle of the
Decade. In Proceedings of the 2nd Workshop on Software Engineering for
Mobile Application Development (MSE’2011, Santa Monica, California,
USA, pages 22–26, 2011.

[27] Tommi Mikkonen and Antero Taivalsaari. Using JavaScript as a real
programming language. Technical report, Mountain View, CA, USA,
2007.

[28] Monsoon Solutions Inc. Power Monitor. URL http://www.msoon.com/

LabEquipment/PowerMonitor/. [Online; received 18 Sep 2012].

http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://doi.acm.org/10.1145/2076732.2076781
http://doi.acm.org/10.1145/2076732.2076781
http://www.html5rocks.com/en/mobile/nativedebate/
http://mashable.com/2012/09/12/web-vs-native-apps/
http://mashable.com/2012/09/12/web-vs-native-apps/
http://msdn.microsoft.com/en-us/library/ms533050.aspx
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/

BIBLIOGRAPHY 70

[29] JT Mudge. Native App vs. Mobile Web App: A
Quick Comparison. URL http://sixrevisions.com/mobile/

native-app-vs-mobile-web-app-comparison/. [Online; received 28
Oct 2012].

[30] S. Murugesan. Understanding Web 2.0. IT Professional, 9(4):34 –41,
july-aug. 2007. ISSN 1520-9202. doi: 10.1109/MITP.2007.78.

[31] Microsoft Developer Network. Application Certification Requirements
for Windows Phone. URL http://msdn.microsoft.com/en-us/library/

windowsphone/develop/hh184843(v=vs.92). [Online; received 4 Sep
2012].

[32] Gerard Nicolas, Karim Sbata, and Elie Najm. Websocket enabler:
achieving IMS and web services end-to-end convergence. In Proceedings
of the 5th International Conference on Principles, Systems and Appli-
cations of IP Telecommunications, IPTcomm ’11, pages 3:1–3:3, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0975-2. doi: 10.1145/
2124436.2124441. URL http://doi.acm.org/10.1145/2124436.2124441.

[33] OpenSignalMaps. Android Fragmentation Visualized: the many faces of
a green robot. OpenSignalMaps Signal Reports, May 2012. URL http:

//opensignalmaps.com/reports/fragmentation.php. [Online; received
27 Jul 2012].

[34] Daniel Pavlic, Mile Pavlic, and Vladan Jovanovic. Future of Internet
technologies. In MIPRO, 2012 Proceedings of the 35th International
Convention, pages 1366 –1371, May 2012.

[35] V. Pimentel and B.G. Nickerson. Communicating and Displaying Real-
Time Data with WebSocket. Internet Computing, IEEE, 16(4):45 –53,
July-Aug. 2012. ISSN 1089-7801. doi: 10.1109/MIC.2012.64.

[36] The WebKit Open Source Project. SunSpider JavaScript Benchmark.
URL http://www.webkit.org/perf/sunspider/sunspider.html. [On-
line; received 7 Oct 2012].

[37] A.K. Saha. A Developer’s First Look At Android. LinuxForYou, Issue,
5(11):48–50, 2008.

[38] Ben Savage. Why HTML5 provided more tricks than treats in
2012, November 2012. URL http://venturebeat.com/2012/11/24/

html5-more-tricks-treats-2012/. [Online; received 7 Dec 2012.

http://sixrevisions.com/mobile/native-app-vs-mobile-web-app-comparison/
http://sixrevisions.com/mobile/native-app-vs-mobile-web-app-comparison/
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184843(v=vs.92)
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184843(v=vs.92)
http://doi.acm.org/10.1145/2124436.2124441
http://opensignalmaps.com/reports/fragmentation.php
http://opensignalmaps.com/reports/fragmentation.php
http://www.webkit.org/perf/sunspider/sunspider.html
http://venturebeat.com/2012/11/24/html5-more-tricks-treats-2012/
http://venturebeat.com/2012/11/24/html5-more-tricks-treats-2012/

BIBLIOGRAPHY 71

[39] David Smith. iOS Version Stats, December 2012. URL http://

david-smith.org/iosversionstats/. [Online; received 11 Dec 2012.

[40] Spaceport.io. Spaceport PerfMarks Report II. Technical report,
May 2012. URL http://spaceport.io/spaceport_perfmarks_2_report_

2012_5.pdf. [Online; received 7 Dec 2012.

[41] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. Web Browser as
an Application Platform. In Software Engineering and Advanced Appli-
cations, 2008. SEAA ’08. 34th Euromicro Conference, pages 293 –302,
sept. 2008. doi: 10.1109/SEAA.2008.17.

[42] A. Taivalsaari, T. Mikkonen, M. Anttonen, and A. Salminen. The
Death of Binary Software: End User Software Moves to the Web.
In Creating, Connecting and Collaborating through Computing (C5),
2011 Ninth International Conference on, pages 17 –23, jan. 2011. doi:
10.1109/C5.2011.9.

[43] Helsinki Region Transports. Other APIs, Reittiopas. URL http://

developer.reittiopas.fi/pages/en/other-apis.php. [Online; received
2 Oct 2012].

[44] Guanhua Wang. Improving Data Transmission in Web Applications via
the Translation between XML and JSON. In Communications and Mo-
bile Computing (CMC), 2011 Third International Conference on, pages
182 –185, april 2011. doi: 10.1109/CMC.2011.25.

[45] William West and S. Monisha Pulimood. Analysis of privacy and secu-
rity in HTML5 web storage. J. Comput. Sci. Coll., 27(3):80–87, Jan-
uary 2012. ISSN 1937-4771. URL http://dl.acm.org/citation.cfm?

id=2038772.2038791.

[46] Word Wide Web Consortium W3C. Document Object Model (DOM).
. URL http://www.w3.org/DOM/. [Online; received 4 Sep 2012].

[47] Word Wide Web Consortium W3C. Web SQL Database. . URL http:

//www.w3.org/TR/webdatabase/. [Online; received 11 Dec 2012].

[48] World Wide Web Consortium. HTML 4.01 Specification. URL http://

www.w3.org/TR/1999/REC-html401-19991224/. [Online; received 15 Aug
2012].

[49] World Wide Web Consortium W3C. HTML5 differences from HTML4,
. URL http://www.w3.org/TR/html5-diff/. [Online; received 15 Aug
2012].

http://david-smith.org/iosversionstats/
http://david-smith.org/iosversionstats/
http://spaceport.io/spaceport_perfmarks_2_report_2012_5.pdf
http://spaceport.io/spaceport_perfmarks_2_report_2012_5.pdf
http://developer.reittiopas.fi/pages/en/other-apis.php
http://developer.reittiopas.fi/pages/en/other-apis.php
http://dl.acm.org/citation.cfm?id=2038772.2038791
http://dl.acm.org/citation.cfm?id=2038772.2038791
http://www.w3.org/DOM/
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/html5-diff/

BIBLIOGRAPHY 72

[50] World Wide Web Consortium W3C. WEB APPLICATIONS (WE-
BAPPS) WORKING GROUP, . URL http://www.w3.org/2008/

webapps/. [Online; received 19 Sep 2012].

[51] World Wide Web Consortium W3C. Device APIs Working Group. .
URL http://www.w3.org/2009/dap/. [Online; received 19 Sep 2012].

[52] World Wide Web Consortium W3C. Geolocation Working Group, . URL
http://www.w3.org/2008/geolocation/. [Online; received 27 Aug 2012].

[53] World Wide Web Consortium W3C. DeviceOrientation Event Speci-
fication. . URL http://www.w3.org/TR/orientation-event/. [Online;
received 19 Sep 2012].

[54] World Wide Web Consortium W3C. WebRTC 1.0: Real-time Com-
munication Between Browsers. . URL http://www.w3.org/TR/webrtc/.
[Online; received 4 Sep 2012].

[55] World Wide Web Consortium W3C. Web Real-Time Communications
Working Group. . URL http://www.w3.org/2011/04/webrtc/. [Online;
received 4 Sep 2012].

[56] World Wide Web Consortium W3C. The WebSocket API. . URL
http://dev.w3.org/html5/websockets/. [Online; received 4 Sep 2012].

[57] World Wide Web Consortium W3C. Touch Events version 1, W3C Can-
didate Recommendation. . URL http://www.w3.org/TR/touch-events/.
[Online; received 28 Sep 2012].

http://www.w3.org/2008/webapps/
http://www.w3.org/2008/webapps/
http://www.w3.org/2009/dap/
http://www.w3.org/2008/geolocation/
http://www.w3.org/TR/orientation-event/
http://www.w3.org/TR/webrtc/
http://www.w3.org/2011/04/webrtc/
http://dev.w3.org/html5/websockets/
http://www.w3.org/TR/touch-events/

Appendix A

Web application source code

Source code for our web application used in the test cases. Leaflet library 1

is required, as well as the necessary resources, such as image files.
<!DOCTYPE html>

<html>

<head>

4 <title>Master ’s Thesis test app</title>

<meta name="viewport" content="width=device -width , initial -scale =1.0, maximum -scale =1.0, user -

scalable=no">

<meta charset="UTF -8" />

<link rel="stylesheet" href="leaflet.css" />

<script src="leaflet.js"></script >

9 <link rel="stylesheet" href="style.css"/>

<script src="app_header.js"></script >

</head>

<body>

<div id="bar" >

14 <div id="btn1" class="active" onclick="show_settings ();">

Asetukset

</div>

<div id="btn2" onclick="show_map ();">

Kartta

19 </div>

</div>

<div id="settings" style="display: block;">

<p>

24 Ohjeet: sovellus näyttää kartta -välilehdellä maailman kartan , jossa n&

auml;kyy oma sijaintisi sekä HKL:n raitiovaunut reaaliajassa. Sijaintitiedot pä

ivittyvät säännöllisesti alla olevien asetusten mukaan.

</p>

<p>Sijaintitietojen päivitystiheys (sekuntia):</p>

<input type="number" value="10" id="updateInterval" style="color: #000; font -family: Verdana;

font -weight: bold; font -size: 12px; background -color: #fff;" />

<p>Valitse seurattava linja:</p>

29 <select id="lines">

<option value="Kaikki">Kaikki </option >

<option value="3T">3T</option >

<option value="3B">3B</option >

<option value="4">4</option >

34 <option value="7">7</option >

<option value="10">10</option >

</select >

<button id="save" onclick="save_settings ();">Tallenna </button >

39 </div>

<div id="mapcontainer" style="display: none;">

<div id="map"></div>

</div>

<script src="app.js"></script >

44 </body>

1http://leaflet.cloudmade.com

73

APPENDIX A. WEB APPLICATION SOURCE CODE 74

</html>

Listing A.1: index.html: Web application HTML source code

APPENDIX A. WEB APPLICATION SOURCE CODE 75

var map = L.map(’map’);

L.tileLayer(’http ://{s}.tile.cloudmade.com/<set -your -id -here >/256/{z}/{x}/{y}.png’, {

maxZoom :18,

attribution: ’Map data © OpenStreetMap contributors , CC-BY -SA , Imagery Â c© <a href="http

:// cloudmade.com">CloudMade ’

5 }).addTo(map);

var busIcon = L.icon({

iconUrl: ’bus.png’,

iconSize: [24,24], // size of the icon

10 iconAnchor: [12,12], // point of the icon which will correspond to marker ’s location

popupAnchor: [0,-12] // point from which the popup should open relative to the iconAnchor

});

map.setView ([60.195 , 24.913] , 13);

15 window.mylocation = new L.LayerGroup ();

window.poigroup = new L.LayerGroup ();

var xmlhttp;

xmlhttp=new XMLHttpRequest ();

20 xmlhttp.onreadystatechange=function () {

if (xmlhttp.readyState ==4 && xmlhttp.status ==200) {

window.poigroup.clearLayers ();

map.removeLayer(window.poigroup);

xmlDoc=xmlhttp.responseXML;

25 x = xmlDoc.getElementsByTagName("vehicle");

for(i = 0; i < x.length; i++) {

type = x[i]. childNodes [2]. textContent;

line = x[i]. childNodes [4]. textContent;

lng = x[i]. childNodes [6]. textContent;

30 lat = x[i]. childNodes [8]. textContent;

heading = x[i]. childNodes [10]. textContent;

heading_str = "";

if(heading >= 337 || heading <= 22) heading_str = "north";

else if(heading >= 293 && heading <= 336) heading_str = "north west";

35 else if(heading >= 247 && heading <= 292) heading_str = "west";

else if(heading >= 202 && heading < 247) heading_str = "south west";

else if(heading >= 157 && heading < 202) heading_str = "south";

else if(heading >= 112 && heading < 157) heading_str = "south east";

else if(heading >= 67 && heading < 112) heading_str = "east";

40 else heading_str = "north east";

L.marker ([lat ,lng], {icon: busIcon }).addTo(window.poigroup)

.bindPopup("Line: " + line + " (" + type + ")
 Heading " + heading_str).openPopup ();

}

map.addLayer(window.poigroup);

45 }

}

/* Read Web Storage and set values accordingly */

updateInterval = localStorage.getItem("updateInterval");

50 if(! updateInterval) {

updateInterval = 10;

}

lines = localStorage.getItem("lines");

if(!lines) {

55 lines = "Kaikki";

}

linesList = document.getElementById("lines");

i = 0;

60 for(i = 0; i< linesList.length; i++) {

if(linesList.options[i].value == lines) {

break;

}

}

65
linesList.options[i]. selected = true;

document.getElementById("updateInterval").value=updateInterval;

/* Async HTTP requests depending on settings */

70 if(lines != "Kaikki") {

xmlhttp.open("GET","http://<api -url >/index.php?lines="+lines+"&"+Math.random (),true);

}

else {

xmlhttp.open("GET","http://<api -url >/index.php?"+Math.random (),true);

75 }

xmlhttp.send();

window.interval = setInterval(function (){

if(lines != "Kaikki") {

80 xmlhttp.open("GET","http://<api -url >/ index.php?lines="+lines+"&"+Math.random (),true);

}

APPENDIX A. WEB APPLICATION SOURCE CODE 76

else {

xmlhttp.open("GET","http://<api -url >/ index.php?"+Math.random (),true);

}

85 xmlhttp.send();

},updateInterval *1000);

90 function save_settings () {

/* Stop timer and read settings */

clearInterval(window.interval);

var new_interval = document.getElementById("updateInterval").value;

if(new_interval < 5) new_interval = 5;

95 if(new_interval > 60) new_interval = 60; // force the update interval between 5-60 sec

/* Save settings */

localStorage.setItem("updateInterval", new_interval);

localStorage.setItem("lines", document.getElementById("lines").value);

100
/* Set up new update timer */

window.interval = setInterval(function (){

params = "";

if(document.getElementById("lines").value != "Kaikki") {

105 params = "?lines="+document.getElementById("lines").value + "&" + Math.random ();

} else {

params = "?"+Math.random ();

}

xmlhttp.open("GET","http://<api -url >/ index.php"+params ,true);

110 xmlhttp.send();

}, new_interval *1000);

alert("Asetukset tallennettu");

}

115
function show_settings () {

document.getElementById("mapcontainer").setAttribute("style", "display: none;");

document.getElementById("settings").setAttribute("style", "display: block;");

document.getElementById("btn1").setAttribute("class", "active");

120 document.getElementById("btn2").setAttribute("class", "");

}

function show_map () {

125 document.getElementById("mapcontainer").setAttribute("style", "display: block;");

document.getElementById("settings").setAttribute("style", "display: none;");

document.getElementById("btn1").setAttribute("class", "");

document.getElementById("btn2").setAttribute("class", "active");

setTimeout("map.invalidateSize ();", 300);

130 }

Listing A.2: app.js: web application JavaScript source code

APPENDIX A. WEB APPLICATION SOURCE CODE 77

input , select {

height: 28px;

3 font: 200 11px Arial , Helvetica , sans -serif;

margin: 8px;

padding -right: 0px 0px 6px 2px;

border: 2px #5cf solid;

}

8 * { /* disable android default tap -highlight */

-webkit -tap -highlight -color: rgba(0, 0, 0, 0);

}

body {

padding: 0;

13 margin: 0;

background -color: #000;

}

html , body , #map {

width: 100%;;

18 height: 100%;

padding -top:0px;

}

div#bar {

23 color: white;

z-index: 999; background: black; position: fixed;

top: 0px; left: 0px; display: block; width: 100%; text -align: center; height: 58px;

overflow: hidden;

font -family: "Helvetica Neue", "Arial";

28 }

div#settings {

color: white;

background: black;

font -family: "Helvetica Neue", "Arial";

33 position: absolute;

left: 0px;

right: 0px;

bottom: 0px;

top: 59px;

38 padding: 15px;

}

div#mapcontainer {

position: absolute;

43 left: 0px;

right: 0px;

bottom: 0px;

top: 59px;

}

48 div.active {

background: -webkit -gradient(linear , left top , left bottom , from (#52 c3fc), to(#2 c83a8));

}

div#btn1 {

width: 50%; overflow: auto;border -bottom: 2px solid #5cf; float: left;

53 }

div#btn2 {

width: 50%; overflow: auto; border -bottom: 2px solid #5cf; float: right;

}

Listing A.3: style.css: web application stylesheet

Appendix B

Android application source code

This appendix includes only the program code, to compile and run the ap-
plication, Android MapView Balloons1 is required as well as the resource
files.
/* This file is a part of TramTracker for Android

2 * Copyright (C) 2012, Jussi -Pekka Erkkil ä

* For copying , please apply the MIT license

*/

import android.util.Log;

import android.app.TabActivity;

7 import android.os.Bundle;

import android.widget.TabHost;

import android.content.res.Resources;

import android.content.Intent;

12 public class MainTabActivity extends TabActivity

{

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

17 setContentView(R.layout.main);

Resources res = getResources (); // Resource object to get Drawables

TabHost tabHost = getTabHost ();

TabHost.TabSpec spec;

22 Intent intent;

// Create an Intent to launch an Activity for the tab (to be reused)

intent = new Intent ().setClass(this , SettingsActivity.class);

spec = tabHost.newTabSpec("hw").setIndicator("Asetukset")

27 .setContent(intent);

tabHost.addTab(spec);

intent = new Intent ().setClass(this , TramTrackerMap.class);

spec = tabHost.newTabSpec("nwt").setIndicator("Kartta")

.setContent(intent);

32 tabHost.addTab(spec);

tabHost.setCurrentTab (0); // load settings first

}

}

Listing B.1: MainTabActivity.java: Android application main activity

1https://github.com/jgilfelt/android-mapviewballoons

78

APPENDIX B. ANDROID APPLICATION SOURCE CODE 79

/* This file is a part of TramTracker for Android

* Copyright (C) 2012, Jussi -Pekka Erkkil ä

* For copying , please apply the MIT license

*/

5 import java.util.List;

import java.util.Timer;

import java.util.TimerTask;

import android.os.Handler;

10 import android.util.Log;

import android.os.AsyncTask;

import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

import android.view.View.OnTouchListener;

15 import android.view.View;

import android.view.MotionEvent;

import android.widget.Button;

import org.apache.http.client.HttpClient;

20 import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.client.methods.HttpGet;

import org.apache.http.HttpResponse;

import org.apache.http.HttpEntity;

25 import org.w3c.dom.Document;

import org.w3c.dom.NodeList;

import org.w3c.dom.Node;

import org.w3c.dom.NamedNodeMap;

30 import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import android.os.Bundle;

import android.graphics.drawable.Drawable;

35 import com.google.android.maps.MapActivity;

import com.google.android.maps.MapView;

import com.google.android.maps.MyLocationOverlay;

import com.google.android.maps.MapController;

import com.google.android.maps.Overlay;

40 import com.google.android.maps.GeoPoint;

import com.google.android.maps.OverlayItem;

public class TramTrackerMap extends MapActivity {

45
private MyLocationOverlay myLocationOverlay;

private MapView mapView;

private MapController mapController;

private List <Overlay > mapOverlays;

50
private SimpleItemizedOverlay itemizedOverlay;

// Settings are loaded in these

private String apiUrl;

55 private String followRoute;

private int updateInterval;

private boolean useMock;

public static final String PREFS_NAME = "TramTrackerPreferences";

60 @Override

protected boolean isRouteDisplayed () {

return false;

}

65 protected void onResume () {

super.onResume ();

Log.w("TramTrackerMap", "Resuming");

this.getPrefs ();

}

70
private void getPrefs () {

apiUrl = "http://<api -url >/";

SharedPreferences settings = getSharedPreferences(PREFS_NAME , 0);

updateInterval = settings.getInt("updateInterval", 10);

75 followRoute = settings.getString("followRoute", "Kaikki");

if(! followRoute.equals("Kaikki"))

apiUrl = apiUrl + "?lines="+followRoute;

Log.v("ASDFDASF", "ApiUrl is now " + apiUrl);

80 }

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

APPENDIX B. ANDROID APPLICATION SOURCE CODE 80

85 // Init mapview component

setContentView(R.layout.mapview);

mapView = (MapView) findViewById(R.id.mapview);

mapView.setBuiltInZoomControls(false);

90 mapView.setOnTouchListener(new OnTouchListener () {

public boolean onTouch(View v, MotionEvent event) {

if(event.getPointerCount () > 1) {

return true;

}

95 return false;

}

});

final Button zoomin_button = (Button) findViewById(R.id.zoomin);

zoomin_button.setOnClickListener(new View.OnClickListener () {

100 public void onClick(View v) {

Log.v("MapViewController", "zoomin");

mapController.zoomIn ();

}

});

105
final Button zoomout_button = (Button) findViewById(R.id.zoomout);

zoomout_button.setOnClickListener(new View.OnClickListener () {

public void onClick(View v) {

Log.v("MapViewController", "zoomotu");

110 mapController.zoomOut ();

}

});

mapController = mapView.getController ();

115 initMap ();

this.getPrefs (); // Load settings

// Setup map overlays , start asynchronous http calls

mapOverlays = mapView.getOverlays ();

120 Drawable drawable = getResources ().getDrawable(R.drawable.bus);

itemizedOverlay = new SimpleItemizedOverlay(drawable , mapView);

mapOverlays.add(itemizedOverlay);

toCallAsynchronous ();

}

125
private void initMap () {

myLocationOverlay = new MyLocationOverlay(this , mapView);

mapView.getOverlays ().add(myLocationOverlay);

myLocationOverlay.enableMyLocation ();

130 myLocationOverlay.runOnFirstFix(new Runnable () {

public void run() {

mapController.animateTo(myLocationOverlay.getMyLocation ());

}

});

135 }

// Start automatically repeating non -blocking background task

public void toCallAsynchronous () {

TimerTask doAsynchronousTask;

140 final Handler handler = new Handler ();

Timer timer = new Timer();

doAsynchronousTask = new TimerTask () {

@Override

public void run() {

145 handler.post(new Runnable () {

public void run() {

AsyncHttpRequest req = new AsyncHttpRequest ();

try {

req.execute(apiUrl);

150 } catch (Exception e) {

}

}

});

155 }

};

// Don’t allow less than 5 sec update interval

timer.schedule(doAsynchronousTask , 0,Math.max(updateInterval * 1000, 5000));

}

160
// Non -blockng http request

private class AsyncHttpRequest extends AsyncTask <String , String , Document > {

protected Document doInBackground(String ... params) {

// Init http client and make request to url

165 HttpClient httpclient = new DefaultHttpClient ();

HttpGet httpget = new HttpGet(params [0]);

APPENDIX B. ANDROID APPLICATION SOURCE CODE 81

HttpResponse response;

// Init DOM document

170 DocumentBuilderFactory factory;

DocumentBuilder builder;

Document doc;

try {

factory = DocumentBuilderFactory.newInstance ();

175 builder = factory.newDocumentBuilder ();

response = httpclient.execute(httpget);

// Get response content

doc = builder.parse(response.getEntity ().getContent ());

180 return doc;

} catch (Exception e) { // dump error message

return null;

}

185 }

// Once we’ve got some response , the data is

// parsed and markers placed on map.

protected void onPostExecute(Document doc) {

190 itemizedOverlay.clear ();

if(doc != null) {

// Get XML elements

NodeList vehicles = doc.getElementsByTagName("vehicle");

OverlayItem overlayItem;

195 GeoPoint point;

Node tmpNode;

double lat = 0, lng = 0;

int heading = 0;

String headingStr = "";

200 NodeList vehicleData;

String line = "", type ="", speed ="";

for(int i = 0; i < vehicles.getLength (); i++) {

vehicleData = vehicles.item(i).getChildNodes ();

line = "Unknown";

205 lat = 0; lng = 0;

type = "Tram";

speed = "";

for(int j = 0; j < vehicleData.getLength (); j++) {

210 tmpNode = vehicleData.item(j);

if(tmpNode.getNodeName ().equals("lat"))

lat = Double.parseDouble(tmpNode.getFirstChild ().getNodeValue ());

if(tmpNode.getNodeName ().equals("lng"))

lng = Double.parseDouble(tmpNode.getFirstChild ().getNodeValue ());

215 if(tmpNode.getNodeName ().equals("line"))

line = tmpNode.getFirstChild ().getNodeValue ();

if(tmpNode.getNodeName ().equals("line"))

line = tmpNode.getFirstChild ().getNodeValue ();

if(tmpNode.getNodeName ().equals("type"))

220 type = tmpNode.getFirstChild ().getNodeValue ();

if(tmpNode.getNodeName ().equals("heading"))

heading = Integer.parseInt(tmpNode.getFirstChild ().getNodeValue ());

if(tmpNode.getNodeName ().equals("speed"))

speed = tmpNode.getFirstChild ().getNodeValue ();

225 }

point = new GeoPoint ((int)(lat*1E6),(int)(lng*1E6));

if(heading >= 337 || heading <= 22) headingStr = "north";

else if(heading >= 293 && heading <= 336) headingStr = "north west";

else if(heading >= 247 && heading <= 292) headingStr = "west";

230 else if(heading >= 202 && heading < 247) headingStr = "south west";

else if(heading >= 157 && heading < 202) headingStr = "south";

else if(heading >= 112 && heading < 157) headingStr = "south east";

else if(heading >= 67 && heading < 112) headingStr = "east";

else headingStr = "north east";

235 if(speed.length () > 0)

headingStr = headingStr + " (" + heading + ")\nSpeed: " + speed + " km/h";

overlayItem = new OverlayItem(point , type + " at line " + line ,

"Heading at " + headingStr);

240 itemizedOverlay.addOverlay(overlayItem);

}

mapView.invalidate ();

}

}

245 }

}

Listing B.2: TramTrackerMap.java: Android application map view

APPENDIX B. ANDROID APPLICATION SOURCE CODE 82

/* This file is a part of TramTracker for Android

2 * Copyright (C) 2012, Jussi -Pekka Erkkil ä

* For copying , please apply the MIT license

*/

import android.os.Bundle;

7 import android.util.Log;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.EditText;

12 import android.app.Activity;

import android.widget.TextView;

import android.widget.CheckBox;

import android.widget.Spinner;

import android.widget.ArrayAdapter;

17 import android.widget.AdapterView.OnItemSelectedListener;

import android.widget.AdapterView;

import android.content.SharedPreferences;

import android.content.SharedPreferences.Editor;

import android.app.AlertDialog;

22 import android.app.AlertDialog.Builder;

import android.app.Activity;

public class SettingsActivity extends Activity {

27 private Button saveButton;

private EditText apiUrl;

private EditText updateInterval;

private CheckBox useMock;

private String toFollow;

32
public static final String PREFS_NAME = "TramTrackerPreferences";

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

37 // Read settings widgets from the layout file

setContentView(R.layout.settingsview);

saveButton = (Button)findViewById(R.id.btn);

updateInterval = (EditText)findViewById(R.id.update);

42
// Read settings from the device storage

SharedPreferences settings = getSharedPreferences(PREFS_NAME , 0);

updateInterval.setText(""+settings.getInt("updateInterval", 10));

47 // Initialize "choose route to follow" -dropdown menu

Spinner spinner = (Spinner) findViewById(R.id.trackline);

ArrayAdapter <CharSequence > adapter = ArrayAdapter.createFromResource

(this , R.array.linearray , android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);

52 spinner.setAdapter(adapter);

// Set spinner listener

spinner.setOnItemSelectedListener(new OnItemSelectedListener () {

public void onItemSelected(AdapterView <?> parent ,

View view , int pos , long id) {

57 toFollow = parent.getItemAtPosition(pos).toString ();

}

public void onNothingSelected(AdapterView parent) {

toFollow = "Kaikki";

}

62 });

// Set spinner value from phone’s storage

ArrayAdapter myAdap = (ArrayAdapter) spinner.getAdapter ();

int spinnerPosition = myAdap.getPosition(settings.getString("followRoute", "Kaikki"));

67 spinner.setSelection(spinnerPosition);

// Savebutton listener

saveButton.setOnClickListener(new View.OnClickListener () {

public void onClick(View view) {

72 int interval;

try {

interval = Math.max(5, Integer.parseInt(updateInterval.getText ().toString ())); // Min

update interval forced to 5 secs

// All objects are from android.context.Context

77 SharedPreferences settings = getSharedPreferences(PREFS_NAME , 0);

SharedPreferences.Editor editor = settings.edit();

editor.putInt("updateInterval", interval);

editor.putString("followRoute", toFollow);

editor.commit ();

82 AlertDialog.Builder dialog = new AlertDialog.Builder(SettingsActivity.this);

APPENDIX B. ANDROID APPLICATION SOURCE CODE 83

dialog.setTitle("Settings saved");

dialog.setMessage("The changes will take effect once you switch to the map view.");

dialog.show();

} catch (Exception e) {

87 Log.v("SettingsActivity", "Saving the settings failed: " + e.toString ());

}

}

});

92
}

}

Listing B.3: SettingsActivity.java: Android application settings view

Appendix C

Example input data from service

This is an example of XML data that the test applications receive and parse
from the remote service.

1 <?xml version="1.0"?>

<locationdata >

<vehicle >

<id>RHKL00092 </id>

<type>tram</type>

6 <line>10</line>

<lng>24.906529 </lng>

<lat>60.193526 </lat>

<heading >305</heading >

</vehicle >

11 <vehicle >

<id>RHKL00090 </id>

<type>tram</type>

<line>3T</line>

<lng>24.9349 </lng>

16 <lat>60.168629 </lat>

<heading >79</heading >

</vehicle >

<vehicle >

<id>353567040316870 </id>

21 <type>bus</type>

<line>4</line>

<lng>24.91868 </lng>

<lat>60.187983 </lat>

<heading >331</heading >

26 </vehicle ><vehicle >

<id>RHKL00095 </id>

<type>tram</type>

<line>4</line>

<lng>24.925151 </lng>

31 <lat>60.183213 </lat>

<heading >143</heading >

</vehicle >

<vehicle >

<id>RHKL00210 </id>

36 <type>tram</type>

<line>9</line>

<lng>24.939487 </lng>

<lat>60.200497 </lat>

<heading >348</heading >

41 </vehicle >

<vehicle >

<id>RHKL00213 </id>

<type>tram</type>

<line>9</line>

46 <lng>24.921471 </lng>

<lat>60.159597 </lat>

<heading >352</heading >

</vehicle >

</locationdata >

Listing C.1: Example of XML data received by the client

84

Appendix D

Power consumption graphs

On every figure, blue graph illustrates the power consumption during use
case, while black curve shows the power usage on idle state.

Figure D.1: Samsung Galaxy S: Native application / UMTS network

85

APPENDIX D. POWER CONSUMPTION GRAPHS 86

Figure D.2: Samsung Galaxy S: the default browser of Android 2.3 / UMTS
network

Figure D.3: Samsung Galaxy S: Opera 12.10 / UMTS network

Figure D.4: Samsung Galaxy S: Firefox 17 / UMTS network

APPENDIX D. POWER CONSUMPTION GRAPHS 87

Figure D.5: Samsung Galaxy S: Native application / WiFi network

Figure D.6: Samsung Galaxy S: Android 2.3 Browser / WiFi network

Figure D.7: Samsung Galaxy S: Opera 12.10 / WiFi network

APPENDIX D. POWER CONSUMPTION GRAPHS 88

Figure D.8: Samsung Galaxy S: Firefox 17 / WiFi network

Figure D.9: Motorola Milestone 2: Native application / UMTS network

Figure D.10: Motorola Milestone 2: Android 2.3 Browser / UMTS network

APPENDIX D. POWER CONSUMPTION GRAPHS 89

Figure D.11: Motorola Milestone 2: Opera 12.10 / UMTS network

Figure D.12: Motorola Milestone 2: Firefox 17 / UMTS network

Figure D.13: Motorola Milestone 2: Native application / WiFi network

APPENDIX D. POWER CONSUMPTION GRAPHS 90

Figure D.14: Motorola Milestone 2: Android 2.3 Browser / WiFi network

Figure D.15: Motorola Milestone 2: Opera 12.10 / WiFi network

Figure D.16: Motorola Milestone 2: Firefox 17 / WiFi network

APPENDIX D. POWER CONSUMPTION GRAPHS 91

Figure D.17: Samsung Galaxy S III: Native application / UMTS network

Figure D.18: Samsung Galaxy S III: Android 4.1 Browser / UMTS network

Figure D.19: Samsung Galaxy S III: Opera 12.10 / UMTS network

APPENDIX D. POWER CONSUMPTION GRAPHS 92

Figure D.20: Samsung Galaxy S III: Firefox 17 / UMTS network

Figure D.21: Samsung Galaxy S III: Chrome 18 / UMTS network

Figure D.22: Samsung Galaxy S III: Native application / WiFi network

APPENDIX D. POWER CONSUMPTION GRAPHS 93

Figure D.23: Samsung Galaxy S III: Android 4.1 Browser / WiFi network

Figure D.24: Samsung Galaxy S III: Opera 12.10 / WiFi network

Figure D.25: Samsung Galaxy S III: Firefox 17 / WiFi network

APPENDIX D. POWER CONSUMPTION GRAPHS 94

Figure D.26: Samsung Galaxy S III: Chrome 18 / WiFi network

Figure D.27: Sony Xperia J: Native application / UMTS network

Figure D.28: Sony Xperia J: Android 4.0 Browser / UMTS network

APPENDIX D. POWER CONSUMPTION GRAPHS 95

Figure D.29: Sony Xperia J: Opera 12.10 / UMTS network

Figure D.30: Sony Xperia J: Firefox 17 / UMTS network

Figure D.31: Sony Xperia J: Chrome 18 / UMTS network

APPENDIX D. POWER CONSUMPTION GRAPHS 96

Figure D.32: Sony Xperia J: Native application / WiFi network

Figure D.33: Sony Xperia J: Android 4.0 Browser / WiFi network

Figure D.34: Sony Xperia J: Opera 12.10 / WiFi network

APPENDIX D. POWER CONSUMPTION GRAPHS 97

Figure D.35: Sony Xperia J: Firefox 17 / WiFi network

Figure D.36: Sony Xperia J: Chrome 18 / WiFi network

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Diversity of Mobile Platforms and Devices
	1.2 Objectives and research questions
	1.3 Thesis structure

	2 Related work
	3 Overview of Web and Mobile Technologies
	3.1 Web Technologies
	3.1.1 Structure of web applications
	3.1.2 JavaScript
	3.1.3 AJAX, JSON
	3.1.4 HTML5 and related APIs

	3.2 Mobile Platforms
	3.2.1 Android
	3.2.2 Apple iOS
	3.2.3 Other alternatives

	4 Web as a Mobile Application Platform
	4.1 Advantages of Web
	4.2 Capabilities and constraints
	4.2.1 I/O and hardware access
	4.2.2 Communications
	4.2.3 Data storage and offline content

	4.3 Support for HTML5 in the mobile
	4.4 Hybrid solutions
	4.5 Security considerations

	5 Web vs. Native - Experimental testing
	5.1 Methods and goals
	5.2 Testing environment
	5.2.1 Hardware
	5.2.2 Test applications
	5.2.3 Automated use case

	5.3 User Experience test
	5.3.1 Implementation
	5.3.2 Results
	5.3.3 Evaluation

	5.4 Performance measurement
	5.4.1 Implementation
	5.4.2 Results
	5.4.3 Evaluation

	5.5 Memory usage
	5.5.1 Implementation
	5.5.2 Results
	5.5.3 Evaluation

	5.6 Energy consumption
	5.6.1 Implementation
	5.6.2 Results
	5.6.3 Evaluation

	6 Discussion and Analysis
	6.1 Sum up and analysis of results
	6.1.1 User Experience
	6.1.2 Performance
	6.1.3 Memory usage
	6.1.4 Power consumption

	6.2 Pros and Cons
	6.2.1 Native technologies
	6.2.2 Web technologies
	6.2.3 Hybrid solutions

	7 Conclusions
	A Web application source code
	B Android application source code
	C Example input data from service
	D Power consumption graphs

