
WebSocket Security Analysis

Jussi-Pekka Erkkilä
Aalto University School of Science

juerkkil@iki.fi

Abstract

The WebSocket technology provides a bi-directional real-
time communications channel for advanced web applications
and services. This study overviews the WebSocket proto-
col and the API, and describes the advantages they provide.
The main contribution of this paper is to review and ana-
lyze the security concerns related to WebSockets, discuss
the possible solutions and provide the best practices for de-
ployment of a WebSocket service. Also, this paper proposes
that certain security features should be implemented in web
browsers to ensure the security and the privacy of the users.
Web browser vendors are in important role when implement-
ing the security features. The WebSocket technology is not
yet standardized but it is expected that usage of WebSockets
will increase significantly in the near future. Overall, Web-
Sockets solve connectivity problems, not the security prob-
lems. Several open issues exist, but with a good design and
proper implementation of web browsers and web services,
the risk level can be mitigated.

KEYWORDS: websocket, html5, security, browser security,
javascript, web

1 Introduction

WebSocket is a technology that provides a bi-directional
real-time communications channel over a Transmission Con-
trol Protocol (TCP) connection [3]. The WebSocket tech-
nology covers JavaScript API (Application Programming In-
terface) that is specified by World Wide Web Consortium
(W3C), and a protocol that is specified by Internet Engineer-
ing Task Force (IETF) [5]. The status of the latest specifi-
cation is a “proposed standard”1. WebSocket API is often
denoted as HTML5 WebSocket API, although it is actually
separated from the HTML5 specification and is currently be-
ing developed and specified independently [17]. The Candi-
date Recommendation of the WebSocket API was released
on September 2012, hence the API is not yet standardized.
However, the functionality specified in the latest drafts is al-
ready implemented in various web browsers.

The WebSocket protocol is a network protocol running on
TCP. It is designed to be implemented in web browsers and
web servers but it can be used for other purposes as well.
The WebSocket protocol is independent of HyperText Trans-
fer Protocol (HTTP), although the protocols have similarities
such as using TCP port 80 and the handshake process when

1http://www.rfc-editor.org/info/rfc6455

initializing a connection [2]. Because the WebSocket tech-
nology is expected to influence the communications in the
web during the next few years, WebSockets may in turn in-
fluence the security of the web. WebSocket is still a rela-
tively new concept and not much public research has been
done in the field of WebSocket security. This paper focuses
on the possible security concerns in the WebSocket protocol
and the API, and also on the security features the technology
provides.

This paper is structured as follows. The second chapter
reviews the background of WebSocket technology and the
usage of the JavaScript API. The third chapter focuses on the
technical security issues of WebSockets. The fourth chapter
discusses and analyzes the security concerns and potential
solutions. The fifth chapter proposes a few solutions on how
the security of WebSockets could be improved. The final
chapter concludes the whole paper and outlines the future
work.

2 Background

This chapter reviews the WebSocket technology in more de-
tail. Section 2.1 discusses the new features and advantages
of the technology compared to traditional web communica-
tions. Section 2.2 illustrates the usage of the WebSocket
JavaScript API on client side.

2.1 Features and advantages of WebSockets

The main difference in WebSockets – compared to the usual
network traffic over HTTP – is that the WebSocket proto-
col does not follow the traditional request-response conven-
tion [16]. Once a client and a server have opened a Web-
Socket connection, both endpoints may asynchronously send
data to each other. The connection remains open and active
as long as either the client or the server closes the connection.
[16]

In contrast, the traditional approach relies on polling. That
is, a client opens a new TCP connection and makes an HTTP
request to receive data from a server. This requires sev-
eral round-trips between the client and the server before
any actual information is sent. Moreover, a new request
is needed by the client for every separate data transmis-
sion. Hence, compared to WebSockets, the traditional HTTP
request-response convention results in high latency and high
amount of network traffic [11]. Figure 1 illustrates how the
WebSocket communication differs from traditional HTTP
calls.



Aalto University T-110.5291 Seminar on Network Security Autumn 2012

Figure 1: Retrieving real-time data with HTTP and Web-
Socket.

The lower redundancy of the WebSocket protocol implies
that fewer computing resources are required for handling and
parsing the data. Moreover, lower latency results in a better
user experience in the client application [11]. However, from
the web client’s point of view, the advantages of the Web-
Socket technology depends on the use case. For delivering a
small number of large files the advantages of WebSockets are
not very significant, because the amount of overhead traffic
is minimal compared to the actual payload data.

On the other hand, while delivering small amounts of data
periodically, the WebSocket protocol may reduce the total
amount of network traffic by several magnitudes. Overall,
compared to traditional HTTP request-response convention,
the WebSocket protocol may provide up to 500:1 reduction
in unnecessary network traffic and a 3:1 reduction in la-
tency [9]. An experimental study by Pimentel et. al (2012)
shows that the latency of HTTP polling is from 2.3 to 4.5
times higher than the latency of the WebSocket protocol [12].

2.2 Functionality of WebSocket

A client establishes a WebSocket channel by sending a usual
HTTP request to a server and asking for an upgrade of an
existing connection [3]. Once the server has accepted the re-

quest, the subsequent messages are sent using the WebSocket
protocol.

The WebSocket API can be used in web applications with
JavaScript in a quite similar manner to XmlHttpRequests [7],
as listing 1 illustrates.

var socket = new WebSocket
("ws://<address>:<port>");

socket.onopen = function(e) {
// socket opened

};
socket.onmessage = function(e) {
alert("data sent by server: " + e.data);

};
socket.onclose = function(e) {
// socket closed

};

Listing 1: Initializing a WebSocket connection using
JavaScript API

In the listing above we define the remote service and TCP
port to which the connection is made. The API will take
care of the handshake and protocol upgrade. After this, we
assign the callback functions that are invoked in the event of
any action. Once the connection is active, we can send data
to the server or close the connection. This is illustrated in
listing 2.

socket.send("hello world");
socket.close();

Listing 2: Sending data and closing the WebSocket
connection using JavaScript API

3 Security concerns of the WebSock-
ets

In web services, the security depends a lot on Transport
Layer Security (TLS) encryption and the same-origin pol-
icy implemented in web browsers. Generally, TLS encryp-
tion provides a secure communication channel, whereas the
same-origin policy shields the user against malicious cross-
site references.

However, because the WebSocket protocol differs from
HTTP in various ways, the differences may also affect to
the security of the web, even though that is not always ob-
vious. For instance, WebSocket messages do not include the
HTTP headers. This may affect the behaviour of web prox-
ies and firewalls. Moreover, the origin policy of WebSocket
protocol is different compared to HTTP. Also, several other
potential threats exist that are involed in the WebSocket tech-
nology. These are described and discussed in more detail in
the following sections.

3.1 Origin Policy
The WebSocket API lets the web application open a connec-
tion and send arbitrary data to any server [4]. For the web
application developers, this is useful and flexible when shar-
ing the resources across the different services. In contrast to
HTTP, the WebSocket protocol uses a verified-origin mech-
anism. This mechanism lets the target server decide, from
which origins it allows connections.



Aalto University T-110.5291 Seminar on Network Security Autumn 2012

WebSocket frames do not include HTTP headers, thus
the origin host is sent to the server in an upgrade-request,
which is a normal HTTP request. It is the responsibility of
the service provider to check the origin host and either al-
low or block the connection. The verified-origin policy does
not actually prevent anyone from connecting to the service,
since the origin field can be easily spoofed. However, the
verified-origin policy shields the client against cross-site re-
quest forgery (CSFR) attacks2.

3.2 Proxies and Firewalls

Proxy traversal and firewalls have been considered in the de-
sign principles of the WebSocket protocol. The handshake
process is compatible with HTTP and the standard HTTP
port 80 is commonly used with the WebSocket protocol.
However, known issues exist, especially in proxy traversal
through transparent web proxies [1, 8]. Moreover, a vul-
nerability involved to the WebSocket protocol was reported3

in November 2010. Malicious usage of a WebSocket chan-
nel allowed cache poisoning of some transparent web prox-
ies. The web browser vendors disabled4 WebSockets until
the WebSocket protocol working group introduced frame-
masking to avoid the vulnerability [4, 5]. Frame-masking
prevents WebSocket clients and servers from injecting mali-
cious content in network intermediaries, since the contents of
WebSocket frames are not delivered in plain text. In practice,
frame-masking is implemented with a 32-bit random nonce
that is delivered at the beginning of each frame. It is done by
masking byte n in the payload data with the byte n mod 4 of
the nonce using XOR operation [5].

The lack of HTTP headers in WebSocket frames may po-
tentially become an issue also for firewalls and for malware
scanners. Advanced firewalls and malware detection tools
that classify and process the data according to the protocol
and the content type, may not be aware of the WebSocket
protocol. Since the WebSocket protocol implements frame-
masking to prevent proxy cache poisoning, this also inhibits
firewalls and anti-virus tools from analyzing the data pat-
terns and detecting the malicious content [13]. The lack of
metadata, such as HTTP headers, complicates the malware
analysis on WebSocket frames even more [10, 13].

The WebSocket protocol does not specify the format
of payload data. Hence, a developer can specify a cus-
tom protocol or use an existing application-level protocol
when communicating through a WebSocket. However, the
WebSocket protocol specifies a header “Sec-WebSocket-
Protocol”, which can be used during the handshake to ad-
vertise the application-level protocol used on WebSockets.
This allows firewalls and routers to set the security policies
accordingly5 – provided that those are aware of the Web-
Socket protocol. However, the threat is that the malicious
content sent over a WebSocket may bypass the firewalls and
anti-virus tools, and harm the end-user.

2http://learnitcorrect.com/blog/websocket-is-great-but-not-the-origin-
policy.html

3http://www.ietf.org/mail-archive/web/hybi/current/msg04744.html
4https://hacks.mozilla.org/2010/12/websockets-disabled-in-firefox-4/
5http://blog.kaazing.com/2012/02/28/html5-websocket-security-is-

strong/

Figure 2: A malicious server may be able to access behind a
firewall through a WebSocket client.

3.3 Malicious services

A malicious website can easily set up a remote shell access
to the victim’s web browser. Once the attacker is able to
run arbitrary JavaScript code inside the web browser, she
is also able to initiate a WebSocket connection to an arbi-
trary service. After this, the attacker can utilize the existing
WebSocket channel to control the web browser in real-time
within the limits of JavaScript [14]. Listing 3 illustrates an
example of this type of attack.

var socket = new WebSocket
("ws://malicious-service.invalid:80");

socket.onmessage = function(e) {
eval(e.data);

};

Listing 3: Example of the browser shell access using
WebSocket

The WebSocket API does not only allow requests to an
arbitrary host, but also to an arbitrary TCP port (except the
common ports blocked by the browsers6). Thus, the technol-
ogy can be utilized for port scanning and network mapping in
the internal network to which the victim is connected [15].
This can be executed by timing analysis, that is, observing
the response times from the server when initiating the Web-
Socket handshakes7. For instance, if the remote server is lis-
tening a certain TCP port, a WebSocket connection attempt
to that port initiates a TCP handshake. Since TCP handshake
requires couple of round-trips, web application may be able
to distinguish open and blocked ports on the remote server
according to the response time. [6].

Hence, the attacker may be able to bypass the firewalls
by setting the victim’s web browser to work as a WebSocket
proxy between the attacker and the internal network [15].
The concept is illustrated in Figure 2. A live example of a
network and port scanning tool using the WebSocket API is

6http://www-archive.mozilla.org/projects/netlib/PortBanning.html
7http://www.andlabs.org/tools/jsrecon/jsrecon.html



Aalto University T-110.5291 Seminar on Network Security Autumn 2012

available in the web8.
Another common type of attack is denial of service (DoS).

Here, a client or a server is flooded with data or connection
requests to such a degree that the endpoint is unable to han-
dle all the requests. This may cause a temporary unavailabil-
ity of the service or a crashing of the attacked application.
In addition, by hijacking a large number of web clients, an
attacker may be able to implement a distributed denial of ser-
vice attack against third parties by using WebSockets. Since
the limit of the simultaneous WebSocket connections is rela-
tively high – between 900 and 3000 in the most browsers9 –
WebSocket may be a powerful technology for such activity.

All of these types of attacks naturally require either trick-
ing the victim to visit a malicious website, or injecting mali-
cious code to some trusted website. This can be achieved, for
instance, by using XSS vulnerabilities which are discussed
next.

3.4 XSS vulnerabilties
Cross-site scripting (XSS) is a common type of security vul-
nerability in web applications. The XSS vulnerabilities al-
low the attacker to inject malicious code in websites that dis-
play parameters or variables that can be modified by user.
For instance, the following script includes a so called re-
flected XSS vulnerability, which can be exploited by inject-
ing JavaScript or HTML code in the GET parameter name.

<?php
print "Hello, ".$_GET[’name’];
?>

Listing 4: An XSS vulnerability in a dynamic web page

The XSS vulnerabilities are common in the web and their
existence does not depend on whether the WebSockets are
used or not. Thus, many kinds of web services may include
XSS vulnerabilities and there are several ways to attack users
through an XSS vulnerability.

However, on the websites that utilize WebSockets, the
XSS vulnerabilities open up several new threats. For in-
stance, with an XSS vulnerability the attacker may be able
to override the callback functions of a WebSocket connec-
tion with custom ones. This approach allows the attacker to
sniff the traffic, manipulate the data, or implement a man-in-
the-middle attack against WebSocket connections. In addi-
tion, by utilizing an XSS vulnerability, the attacker is able to
implement practically any attack described in the section 3.3
against an unsuspecting web client.

3.5 Encryption and data validation
The WebSocket protocol does not specify mechanisms for
authentication or encryption of connections [5]. The pro-
tocol specification suggests to use TLS for providing con-
fidential communication channels. Since the the TLS pro-
vides transport layer encryption, it also provides confiden-
tiality and integrity for the WebSocket frames. Authentica-
tion can be also implemented using TLS or other generic

8http://andlabs.org/tools/jsrecon.html
9https://community.qualys.com/blogs/securitylabs/2012/08/15/would-

you-let-your-grandma-use-websockets

methods for web authentication, such as cookies or HTTP
Authentication [5].

Another relevant point is data validation. The WebSocket
protocol specifies that both a client and a server must validate
the data received from each other. If invalid data is received,
the WebSocket connection should be closed [5]. Commonly,
WebSocket servers should always assume that clients may
not comply with the protocol, and the origin host may be
spoofed.

3.6 Lack of official standards
Other issues with WebSockets result from the unfinished
standards and the early implementations of the WebSocket
protocol and the API. For instance, the WebSocket protocol
defines that only encrypted WebSocket connections should
be initiated from a TLS-secured website. However, currently
only Mozilla Firefox complies with this policy [13]. Essen-
tially, this is same issue as loading plain HTTP content in
TLS-secured website, which is commonly either disabled or
reported to the user.

Also, since the specifications are not standardized yet,
both the API and the protocol might change in future. This
may also slow down the adaption of the WebSocket proto-
col in firewalls, network analysis tools and proxies. Hence,
when deploying a service using WebSockets it is important
to comply with the latest specifications and to keep the im-
plementations up to date.

4 Discussion and analysis
WebSockets provide many advantages but also open up po-
tential security issues. Some of them are rather theoretical
and require further studying so that we could understand
them and their countermeasures better. On the other hand,
other security issues are more visible and proof-of-concepts
have been implemented. Many of the attacks discussed in
this paper are not specific to the WebSocket API or the pro-
tocol. For instance, denial of service attacks can be imple-
mented on many protocols and practically on any network
layer. The WebSocket protocol is simply a one more proto-
col that can be used for denial of service attacks.

Not all of the security issues are caused by the WebSocket
protocol or API specification. The issues are also related
to other common network components, such as proxies and
firewalls, which do not understand the WebSocket protocol,
as well as the web browsers that do not comply with the pro-
tocol specification or security policies. However, this is ex-
pected to change in the long-term, once the WebSocket pro-
tocol has been standardized and adopted widely

Overall, WebSockets provide many advantages for real-
time communications. Trustworthy web services must be
able to take advantage of them, however, in such a way that
the security of the service is not compromised. On the other
hand, we can not prevent malicious websites intentionally
attacking their visitors. Hence, when analyzing possible so-
lutions for the security issues involving the WebSocket tech-
nology, we can divide the problem into two separate parts.

1. Deploying the WebSocket technology in trustworthy



Aalto University T-110.5291 Seminar on Network Security Autumn 2012

web services, while preserving the security of the ser-
vice and privacy of users.

2. Shielding web browsers and end-users against mali-
cious usage of WebSockets.

The solution proposals for the first problem are covered
in section 4.1. In general, TLS encryption and careful im-
plementation provide a security level that meets the require-
ments of the most services. However, the second issue is
more complicated. The problem is to determine, whether a
website is using WebSockets against the client or not. If the
website or the service is suspicious, the browser may either
block the WebSocket connections or warn the user, depend-
ing on policy. We analyze these issues more closely in sec-
tion 4.2

4.1 Deployment recommendations
Deploying WebSockets in a public web service is the respon-
sibility of service developers and administrators. The de-
velopers need to consider both security of service back end,
such as the servers and databases, as well as privacy of the
users. Below are the general guidelines for the safe deploy-
ment of a web application utilizing WebSockets. The list is
based on the findings of this paper and the “HTML5 Security
Cheat Sheet”10:

• Both a service and a client should be implemented care-
fully, strictly following the latest specifications.

• Developers should be aware that XSS vulnerabilities
exist, and they can be used to compromise WebSocket
based communication.

• To achieve confidentiality and integrity, TLS encryption
should be used. If the website initiating the WebSocket
connection is delivered over HTTPS, TLS should be
used anyway.

• Attention should be paid to implementing the authenti-
cation and the session management.

• Endpoints should not trust each other. Thus, both a
client and a server should validate all the input received
through WebSocket connections.

When possible, it may be a good choice to utilize existing
and well-known solutions to implement the critical parts of
the WebSocket service. For instance, using a common ap-
plication level protocol as a subprotocol for the WebSocket
communications is reasonable, since implementing a new
protocol securely is demanding and requires wide knowl-
edge.

4.2 Analysis of possible solutions
To protect end-users against malicious websites and services,
a natural approach would be to always request a permission
from the user for opening a WebSocket connection, and let-
ting the user decide whether the connection is trustworthy.

10https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

However, the vast majority of the users do not understand
such technical matters. They would only probably accept the
requests to disable the irritating confirmation popups. More-
over, once the WebSocket technology is widely adopted, it is
not practical to request permissions all the time.

Another possible solution would be to implement an in-
trusion detection system for web browsers. Here, a web
browser would maintain a list of requested WebSocket con-
nections and according to destination hosts and ports, try to
detect malicious operations such as port scanning or network
mapping. For example, web browsers could detect and block
WebSocket connection attempts to subsequent IP addresses
or network ports. This should be possible, since many fire-
walls already include such features – albeit implemented on
lower level. However, firewalls usually protect networks
against inbound connection attempts, whereas WebSockets
may be utilized for scanning internal network from inside,
as we illustrated in figure 2.

As explained in the section 3.3, port scanning and net-
work mapping with WebSockets is based in response times
of WebSocket connection attempts. Hence, port scanning
could be hindered by forcing a minimum delay for the re-
sponses of WebSocket handshake requests. This inhibits the
timing analysis which in turn inhibits distinguishing open
and closed ports on the target server. However, it is also a
tradeoff between security and performance.

To shield the user from denial of service attacks, we need
to limit both the number of simultaneous connections and
maximum size of messages. The number of simultaneous
WebSocket connections is an implementation-specific issue
— and the browser vendors have already set the limits [13].
The protocol specifies that a single WebSocket message may
consist of an infinite number of frames, where the frame size
is practically unlimited [5]. In addition, the underlying im-
plementation should concatenate the frames of a fragmented
message and provide the complete message to the applica-
tion level. Thus, both servers and clients can easily run out
of memory, if this issue is not handled correctly.

Preventing a remote shell access to the web browser is
problematic. Because of dynamic nature of JavaScript, auto-
matic analysis and detection of code injection flaws is prac-
tically not possible. Another approach could be detecting
possible program code received through a WebSocket. How-
ever, the data can be masked using a custom algorithm. Also,
preventing the usage of JavaScript eval() function with the
WebSocket API is inadequate, since the malicious code can
be pre-written on the website and invoked depending on the
WebSocket communications.

4.3 Solution proposals
Since usually the WebSocket API is used by the web
browsers, the browser vendors play an important role.
Hence, we propose that web browsers should implement
certain security features to guarantee secure browsing for
users. In practice, this could be implemented by analyzing
the metadata of website and the WebSocket connections it
initiates. The decision about the legitimacy of the website
could be made according to, for example, following metrics:

• Number of WebSocket connection attempts.



Aalto University T-110.5291 Seminar on Network Security Autumn 2012

• WebSocket connection attempts to subsequent IP ad-
dresses or port numbers.

• WebSocket connection attempts to suspicious destina-
tions, such as localhot or internal network.

• Existence of the origin host in public blacklist or
whitelist services.

• Other anomalies in WebSocket communication, such as
exceptional size of WebSocket messages or frames.

Monitoring these indicators does not require analysis of
the website source code. It would be sufficient to monitor
the network connections and to call the whitelist services oc-
casionally. The metrics could be optimized in order to max-
imize the hit rate and to minimize false positives.

For instance, if a public website, that does not appear in
any whitelist service, attempts to open WebSocket connec-
tions to IP addresses in internal network, it should be classi-
fied as suspicious. On the other hand, a website that exists
in a public whitelist service is probably legitimate and can
be allowed to use WebSockets. In many cases it may be dif-
ficult to determine, whether the connection is legitimate or
not. Hence, in case of doubt the web browser could either
warn the user about suspicious network connection, or re-
quire a permission for the connection by the user. However,
this should be rather an exception than a rule.

In addition, as mentioned in previous sections, network
scanning may be hindered by forcing a minimum delay by
forcing a minimum response time for WebSocket connec-
tions. This inhibits detection of open and blocked ports by
preventing timing analysis. Also, denial of service attacks
could be restricted by lowering the number of allowed Web-
Socket connections and restricting size of WebSocket mes-
sages and frames. Preferably the values should not be hard-
coded, since they can be found too insecure or strict.

Overall, WebSockets can be deployed safely, but mali-
cious websites may also intentionally utilize WebSockets
against end-users. Open issues, such as JavaScript shell
prevention, exist. However, we expect that together with a
proper implementation and optimization, these kind of fea-
tures would enhance the security of web browsers.

5 Conclusion
As we have seen in this paper, the WebSocket technology in-
creases the opportunities of real-time web applications. Nev-
ertheless, the technology is not yet standardized or widely
deployed. Although the expectations of HTML5 and the re-
lated web technologies have been high, we are yet to see the
final breakthrough. However, we expect that in the near fu-
ture the WebSocket API and the protocol will be more widely
adopted, especially in time-critical web applications and ser-
vices.

Once the WebSocket technology is widely adopted, the se-
curity threats will become more concrete. Whereas the Web-
Socket services can be deployed safely, they also can be uti-
lized for malicious purposes. All the parties, including the
WebSocket protocol working group, web browser vendors

and service developers, should pay attention to the known se-
curity issues. It would seem reasonable to restrict the usage
of the WebSocket API in web browsers, in a way or another,
in order to prevent attacks on users via WebSocket connec-
tions. Overall, the WebSocket protocol solves connectivity
problems, not security problems. To address the security
issues, a comprehensive security model for the WebSocket
protocol and the API is needed to define the responsibili-
ties of the protocol specification, web browsers and service
providers.

References
[1] O. Cassetti. Technical Report on Web-

sockets and their interaction with firewall.
http://www.scss.tcd.ie/~casseto/
websockets-firewall-proxies.pdf, March
2011. [Online; received 22 Sep 2012].

[2] O. Cassetti and S. Luz. The WebSocket API as
supporting technology for distributed and agent-driven
data mining. http://www.scss.tcd.ie/
~casseto/NGDM11-websockets.pdf, 2011.
[Online; received 22 Sep 2012].

[3] R. R. Ganji, M. Mitrea, B. Joveski, and F. Preteux.
HTML5 as an application virtualization tool. In Con-
sumer Electronics (ISCE), 2012 IEEE 16th Interna-
tional Symposium on, pages 1 –4, June 2012.

[4] L. Huang, E. Chen, A. Barth, E. Rescorla, and C. Jack-
son. Talking to yourself for fun and profit. Proceedings
of Web 2.0 Security and Privacy 2011, 2011.

[5] Internet Engineering Task Force (IETF). The Web-
Socket Protocol, RFC 6455.

[6] L. Kuppan. Attacking with HTML5. BlackHat Web-
Cast, December 2010.

[7] R. M. Lerner. At the forge: communication in HTML5.
Linux Journal, 2011(202), Feb. 2011.

[8] P. Lubbers. How HTML5 Web Sockets Interact
With Proxy Servers. http://www.infoq.com/
articles/Web-Sockets-Proxy-Servers,
2010. [Online; received 16 Oct 2012].

[9] P. Lubbers and F. Greco. HTML5 Web Sockets: A
Quantum Leap in Scalability for the Web. http://
www.websocket.org/quantum.html. [Online;
received 25 Sep 2012].

[10] L. McVittie. Oops! HTML5 Does it Again.
https://devcentral.f5.com/weblogs/
macvittie/archive/2012/02/15/
oops-html5-does-it-again.aspx, February
2012. [Online; received 17 Oct 2012].

[11] G. Nicolas, K. Sbata, and E. Najm. Websocket en-
abler: achieving IMS and web services end-to-end
convergence. In Proceedings of the 5th International
Conference on Principles, Systems and Applications of



Aalto University T-110.5291 Seminar on Network Security Autumn 2012

IP Telecommunications, IPTcomm ’11, pages 3:1–3:3,
New York, NY, USA, 2011. ACM.

[12] V. Pimentel and B. Nickerson. Communicating and
Displaying Real-Time Data with WebSocket. Internet
Computing, IEEE, 16(4):45 –53, July-Aug. 2012.

[13] M. Schema, S. Shekyan, and V. Toukharian. Hacking
with WebSockets. BlackHat USA 2012.

[14] M. Schmidt. HTML5 web security V1.0, December
6th, 2011. Compass Security AG, pages 23–26, 2011.

[15] S. Shah. HTML5 Top 10 Threats Stealth Attacks and
Silent Exploits. BlackHat Europe 2012.

[16] A. Wessels, M. Purvis, J. Jackson, and S. Rahman.
Remote Data Visualization through WebSockets. In
Information Technology: New Generations (ITNG),
2011 Eighth International Conference on, pages 1050
–1051, April 2011.

[17] World Wide Web Consortium W3C. The WebSocket
API: W3C Candidate Recommendation. http://
www.w3.org/TR/websockets/. [Online; re-
ceived 25 Sep 2012].


